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Abstract 

 This monograph addresses in a new way how brains may use signal 
spikes to compute, perceive, and support cognition.  It presents and 
simulates simple novel numerical models of neurons and discusses the 
relationship between their performance and known neural behavior.  
Modest math skills combined with the included brief review of neural 
signaling should enable most readers to understand the basic issues while 
skimming over the more specialized portions.  Readers more interested in 
perception and cognition might wish to begin with Chapter 1 and then 
jump to Section 5.3 and the rest of the text before returning to the 
beginning to read about the mathematics of spike processing. 

 Novel contributions include: 

1) A simple binary neuron model (the “cognon model”) that learns and 
recognizes complex spike excitation patterns in less than one second while 
requiring no unexpected neural properties or external training signals.  An 
excitation pattern has no more than one spike per input synapse and 
typically lasts less than about 20 milliseconds. 

2) A Shannon mutual information metric (recoverable bits/neuron) that 
assumes: 1) each neural spike indicates only that the responsible nearly 
simultaneous neuron input excitation pattern had probably been seen 
earlier while that neuron was “learning ready”, and 2) the information is 
stored in synapse strengths.  This focus on recallable learned information 
differs from most prior metrics such as pattern classification performance 
or those relying on specific training signals other than the normal input 
spikes. 

3) Derivation of an equation for the Shannon metric that suggests such 
neurons can recall useful Shannon information only if their probability of 
firing randomly is lowered between learning and recall, where an increase 
in firing threshold before recall is one likely mechanism. 

4) Extensions and analyses of cognon models that also use spike timing, 
dendrite compartments, and new learning mechanisms in addition to spike-
timing-dependent plasticity (STDP). 
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5) Simulations that show how simple neuron models having between 200 
and 10,000 binary-strength synapses can recall up to ~0.16 bits/synapse by 
optimizing various neuron and training parameters. 

6) Translations of these simulation results into estimates for parameters 
like the average bits/spike, bits/neuron/second, maximum number of 
learnable patterns, optimum ratios between the strengths of weak and 
strong synapses, and probabilities of false alarms (output spikes triggered 
by unlearned patterns). 

7) Concepts for how multiple layers of neurons can be trained 
sequentially in approximately linear time, even in the presence of rich 
feedback, and how such rich feedback might permit improved noise 
immunity, learning and recognition of pattern sequences, compression of 
data, associative or content-addressable memory, and development of 
communications links through white matter. 

8) Report of a seemingly novel and rare human waking visual anomaly 
(WVA) that lasts less than a few seconds but seems consistent with these 
discussions of spike processing, rich feedback, and, surprisingly, video 
memories consistent with prior observations of accelerated time-reversed 
maze-running memories in sleeping rats. 

9) Discussions of the possible relationship between the new neural spike 
feedback model and new experiments in the initiation and termination of 
transient weak hallucinations while the subjects were aware of their true 
surroundings.  Some of these experiments may have useful medical 
implications. 

 

 

 

 

 



!

!

! ! ! ! ! #!

 

Preface 

 Few grand challenges are more daunting than the intertwined 
mathematical, neurological, and cognitive mysteries of brain.   This 
monograph addresses all three, but focuses primarily on the mathematical 
performance limits of neuron models that appear consistent with 
observations. 

 The most basic of these neuron models (the basic “cognon model”) 
utilizes only two well-known properties of cortical neurons: 1) they 
produce a ~1-millisecond ~100-millivolt electrochemical output “spike” 
only when their synapse-weighted input spikes simultaneously sum to 
exceed a variable “firing threshold” for the instantaneous excitation 
pattern, and 2) the weight applied by each input terminal (the synapse 
strength) can increase long-term if it is excited when that neuron fired.  In 
addition the only information conveyed by a cognon output spike is that 
the cognon was probably exposed to the responsible excitation pattern 
during a prior period of learning readiness. 

 Extensions of this basic cognon model allow precisely dispersed 
spike delays within a single pattern, multiple dendrite compartments, and 
alternative learning rules for synaptic strength.  Because real neurons are 
far more complex they should perform better than cognons. 

 However, neuron model performance must be defined in a 
neurologically relevant way before it can be quantified and optimized.  The 
Shannon information metric for the recallable taught information follows 
directly from our simplifying assumption that a spike implies only that a 
cognon’s responsible current excitation pattern resembles one that it saw 
when it was “learning ready.”  This information metric (recallable 
bits/neuron) is simply the mutual information between the ensembles of 
taught and recalled patterns and depends on teaching strategy.  It differs 
substantially from most prior information measures that do not restrict the 
metric to recallable learned information. 

 The ultimate test of this modeling strategy is whether or not these 
rudimentary neuron models can successfully recall large amounts of 



!

!

! ! ! ! ! #"!

information when scaled up to reflect neurologically expected firing 
thresholds, numbers of synapses per neuron, spreads in synaptic strength, 
and spike frequencies.  Our results of ~0.16 bits/synapse for cognons with 
up to 10,000 synapses rivals or exceeds most estimates obtained for other 
neuron models despite our minimalist and arguably plausible assumptions.  
Real neurons probably can perform even better since evolution has resulted 
in great neuron complexity involving many special purpose 
neurotransmitters and other components.  This physical complexity 
presumably evolved to enable neurons and neural networks to utilize 
optimum signal processing techniques that we have yet to identify. 

 With this encouraging performance of ~0.16 bits/synapse we then 
extended the model to include substantial signal feedback and to show how 
feedback could arguably facilitate signal detection, storage, and content-
addressable memory functions for both static and time-sequential patterns.  
This discussion then presents an apparently newly observed but very rare 
“waking visual anomaly” (WVA) that typically lasts less than a few 
seconds and seems consistent with the feedback model for spike 
processing.  Most intriguing is WVA evidence that humans can recall 
movies played backward at high speed, as do some rats when dreaming of 
running mazes (Davidson, T., Kloosterman, F. & Wilson, M., 2009) 
Additional evidence from traditional hallucinations is also considered 
along with potential medical applications.  

 This monograph represents the product of the lead author’s lifetime 
interest in brain function, supported by the second author’s development 
and use of a series of spike-processing neural simulators.  The hope of the 
authors is that the results and insights presented here will motivate and 
enable others to design new neuroscience experiments and to explore and 
extend these spike-processing neuron models at both the neuron and 
system level so as to improve understanding of brain function in ways that 
lead to useful medical and educational applications. 

 

    David H. Staelin and Carl H. Staelin 

    October 25, 2011 
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Chapter 1 
Introduction 
 

1.1 The challenge 

 Understanding how the human brain computes so rapidly using neural 
spikes remains a challenging intellectual problem.  This monograph uses 
simple neural models to show how spike-based processing can support 
rapid learning and recognition of complex patterns, and how certain 
mathematical considerations may limit the brain’s computational 
performance as a function of neuron architecture. 

 Readers more interested in perception and cognition might wish to 
begin with this Chapter and then jump to Section 5.3 and the rest of the 
text, where perception and cognition are discussed more generally, before 
returning to the beginning to read about the mathematics of spike 
processing that enables such perception and cognition.  

 Neurons are the basic computational units of the brain and perform 
both logic and wiring functions as single interconnected cells.  Simulations 
show that the new model neurons presented here (called cognons) can learn 
a single complex excitation pattern in less than a second, and can each 
neuron learn to recognize hundreds of distinct patterns in a manner 
arguably consistent with known neural behavior. 

 General considerations then suggest how significant feedback of 
spikes from upper neural layers might facilitate recognition of noisy, time-
sequential, or partial patterns.  This leads to a discussion of how transient 
flaws in the same feedback mechanisms can yield informative phenomena, 
as supported by experiments involving initiation and termination of mild 
visual, auditory, and olfactory illusions. 
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 The presentation is intended to be largely accessible to broad 
audiences, from scientists and engineers to interested technically minded 
lay people.  A brief review of basic neuroscience is provided for those new 
to the field, and the significance of most mathematical and less accessible 
elements is summarized in more understandable terms throughout the text.  
It is hoped that most readers encountering difficult sections will generally 
be able to skip over them while retaining the essence of the presentation. 

 Observations of the brain show that neural signals consist mostly of 
spikes of perhaps one-millisecond duration, or bursts of such spikes.  We 
ignore here the special case of rapid bursts.  Although voltage pulses 
traveling along single or bundled metal wires have long been studied and 
utilized by computer and communications engineers, most such wires have 
only one or a few destinations.  In strong contrast, a spike from a typical 
neuron might stimulate 10,000 other neurons, each of which might then 
feed 10,000 others.  Such architectures have no obvious counterparts 
within traditional communications or computer science. 

 Moreover, simultaneous observation of all inputs and outputs from 
even a single typical neuron having thousands of connections is so difficult 
that its exact mathematical operation must be inferred from partial data, 
and the situation becomes even more problematic when networks of such 
highly interconnected neurons are probed.  This elusiveness of the 
computational issues contrasts strongly with the enormous amount already 
known about the brain’s biochemistry, structure, and connections because 
of the much more powerful observational tools available for such physical 
studies.  

 Another strong difference between neurons and logic elements is that 
neurons produce a spike primarily when their inputs are excited with more 
than some threshold number of spikes within one or a few milliseconds, 
where the threshold might be ten or more simultaneous spikes, and a 
typical neuron might produce only a few output spikes per second.  In 
contrast, the building blocks of most computer, communications, and 
algorithmic systems involve simple logic gates or operators that respond to 
no more than a few simultaneous inputs on the same few wires, and then 
excite only a few other such elements at roughly gigahertz rates (109 per 
second). 
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 The very slow rate of brain signaling by single neurons is therefore 
compensated by its vastly greater parallelism and interconnectivity, where 
a human brain might employ 1011 – 1012 neurons.  Modern computers (e.g., 
CPU’s in 2011) appear to approach the human brain when one multiplies 
three numbers: the number of register bits (say 103 for computers and 1011 
neurons for brain) times the average operations per second of each (say 
~1010 for computers and ~4 for brain) times the average number of active 
outputs per element (say ~4 for computers and ~104 for brain); these 
products are then 4!1013 for computers and 4!1015 for the brain.  A brain 
with 1014 synapses that each store an average of 0.1 bit is roughly 
equivalent to a 1-terabyte computer memory.  Since there are many things 
that computers and brains can do that the other cannot, this hybrid 
computational metric (the product of three numbers) is only suggestive at 
best. 

 One result of these differences relative to computer and 
communications science is that there is little prior art useful for 
understanding the computational basis of brain.  For example, the best 
current real-time observations of neural spikes monitor only a few hundred 
outputs, mostly from different neurons.  Unfortunately there are no 
simultaneous observations of all 10,000 inputs to a single neuron, or even a 
majority of them, nor are such observations likely soon because of their 
difficulty.  Part of the difficulty is that such multi-neuron probes sample 
sets of neurons that are determined by where the probes randomly land 
within the neural tissue. Targeting is difficult because neuron cell bodies 
have diameters on the order of 50 microns while the intensely intertwined 
“wires”, dendrites and axons, have diameters on the order of 1 and 0.2 
microns, respectively.  As a result the exact computational function of 
neurons must be inferred from complex indirect experiments providing 
incomplete information, and much remains unknown. 

 This monograph focuses instead more on the mathematical properties 
and limitations of various alternative neural computational models with the 
hope that they could arguably support perception while also being 
consistent with existing neurological observations.  As mentioned earlier, 
the models studied here will be arguably shown to have this potential, 
although much remains to be learned.  The greater complexity of real 
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neurons could only improve the performance of the simple models 
because, in a mathematical sense, simple models are a small subset of all 
possible models. 

 Some existing neurological observations are sufficiently demanding 
that they preclude most alternative models.  Foremost among these 
observations are that: 1) humans can learn new complex visual and 
auditory patterns in less than one second and recognize them thereafter, 
also within less than a second, 2) this rapid learning and recall is based on 
typical spike separations of tens of milliseconds within attentive neurons, 
which implies that a maximum of a few spikes are required per 
participating neuron per recognition event, and 3) the information content 
of the DNA that defines the brain (conservatively fewer than 1010 bits) is 
far less than the information content of an educated brain (conservatively 
more than 1012 bits); this implies that most information is not innate but 
must be learned by deep networks of neurons that appear locally to be 
wired randomly. 

 In addition to constraints imposed by observations there is an 
important constraint imposed by computer theory.  That is, early models 
for neural learning often assumed that neurons and synapses learned by 
being “rewarded” when a “trainer” of unspecified origin determined that 
the neuron had responded correctly to  a given input excitation pattern, and 
that  it was “punished” when it responded incorrectly.  This paradigm is 
closely related to the back-propagation training protocols widely used in 
multi-layer artificial neural networks (ANN) designed for various practical 
signal processing tasks.  ANN originally used analog signals rather than 
spike timing under the assumption that neural information was more likely 
conveyed by spike frequency; now analog signals are used because they 
are so useful in practice.  ANN training is a slow iterative process that does 
not match observed behavior of instant learning. 

 The strengths of ANN synapses connecting an output neuron to one or 
more input neurons are individually increased or decreased depending on 
the degree to which they contributed to each desired output strength of the 
second neuron as determined by a “trainer” that both provides the training 
inputs to the first neural layer and the desired output of the output neuron. 
At least two ANN layers are typically involved, and often more.   
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 However, it has been shown that training of synapses that link as few 
as two ANN neurons located in one neural layer to one neuron in the next 
layer is impossibly slow relative to the nearly instant learning capabilities 
of humans (Blum & Rivest, 1992).  This is because inter-neuron back-
propagation training times are arguably NP-complete in the number of 
connections per neuron.  This suggests that neural training times are 
exponential in the number of inter-neural connections, which might 
approximate 10,000.  The implication is that instant learning must be 
implemented by intra-neural (single neuron) training rather than by inter-
neural training.  Unfortunately, few other useful mathematical constraints 
on neural learning have been developed. 

 This shortage of prior art motivates beginning with simplified neural 
models that roughly approximate known neural behavior while also 
permitting mathematical analysis of their learning and recall performance. 
Our original hope was that the simplest neural model that is arguably 
consistent with most basic physical properties of neurons would also 
arguably rival observed neural computational performance.  We were 
optimistic that simple models might suffice because cortical architecture is 
similar across a single cortex despite the very different visual, auditory, 
olfactory, tactile, motor, and other functions performed by its various 
regions. 

 Cortex is the gently wrinkled layer of computational grey matter 
perhaps 1-2 mm thick that wraps around the white matter that wires the 
various cortical regions together.  Since cortical architecture is similar 
across most animal species it seems plausible that cortex may have evolved 
to optimize universal mathematical performance limits within biological 
constraints.  This optimism concerning the potentially high computational 
performance of simple neuron models was ultimately justified by the 
cognon simulations presented later. 

 

1.2 Brief review of neural structure 

 The brain consists mostly of “gray matter” and “white matter,” where 
most gray matter resides in an outer cortical layer about 1-2 mm thick 
folded in a convoluted way around the white matter which rapidly 
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propagates signals from one region of the brain to another.  Gray matter is 
roughly analogous to the logic circuits of computers, while white matter is 
more analogous to wires having limited logic functionality. 

 Typical neurons in cortex resemble trees perhaps 0.2 – 1 mm in 
height, although their forms vary widely.  The “roots” where neural input 
signals arrive are called dendrites, the “stubby trunk” where the spikes are 
generated is called the cell body or soma, and the thin “branches” along 
which the output spikes travel are called axons.  These components are 
suggested in Figure 1.1.  Full arrays of axons and dendrites associated with 
a neuron are sometimes called axon and dendrite arbors, respectively, 
because of their tree-like forms.  The junction between one axon branch 
(output) of one neuron and a dendrite (input) of another occurs at a 
synapse, and the number of potential inputs per neuron equals its number 
of afferent (input) synapses, which can be 10,000 or more (Braitenberg & 
Schuz; 1999, Koch, 1999). 

 Because axons continually add sufficient energy to their propagating 
spikes to compensate for any attenuation, the spikes arrive at the tip of 
each axon branch with comparable energy and duration.  A spike is an 
electrochemical phenomenon of roughly 1-millivolt amplitude that 
propagates along cortical axons and dendrites at speeds that vary between 
many meters per second in large axons down to fractions of a meter per 
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Figure 1.1   Artist’s sketch of a typical neuron with its dendrite arbor 
below, the soma or cell body in the center, and the axon arbor above. 
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second in the thinnest axons having diameters approaching 0.1 micron.  It 
has been suggested that a single cubic millimeter of cortex might contain 
up to 4 km of axons (wires), orders of magnitude beyond anything yet 
achieved by industry. 

 The strength of each synapse varies individually with learning — it is 
the prime locus of memory, in combination with the identities of the two 
neurons it links.  Most basic neuron models assume that they spike when 
the nearly simultaneous sum of their input spikes weighted by their 
respective synapse strengths exceeds some firing threshold H that varies 
with time (McCulloch & Pitts, 1943; Koch, 1999; VanRullen, Guyonneau, 
& Thorpe, 2005).  In our simplified binary models of neurons we assume 
all spikes have the same amplitude and shape, while synapses have only 
two possible strengths, 1 and G (G > 1), where the option of G = 0 is 
treated separately later. 

 Since this threshold model is so central, it bears repeating.  A basic 
threshold-firing neuron model produces an output spike only if during a 1-
millisecond period, say, the summed excitation at that neuron’s dendrites 
exceeded the neuron’s firing threshold.  The summed excitation is the sum 
of each input spike arriving during that same period, weighted by the 
strength of each corresponding input synapse.  For example, if during a 
single pattern period 20 excitation spikes arrived at 20 strong synapses 
each of strength G, then the sum would be 20G.  If the firing threshold 
were 20G, the neuron would instantly fire and produce an output spike that 
would propagate quickly and unattenuated to the tip of each output axon 
branch to excite perhaps 10,000 other neurons.  If the same 20 excitation 
spikes happened to arrive instead at 20 weak synapses, each having 
strength of 1, then the sum would be only 20, which would be below the 
firing threshold 20G (G > 1) and no output spike would be generated. 

 Thus, within the nominal 1-millisecond period, only arriving input 
spike patterns that almost exclusively excite strong synapses would cause 
the neuron to fire, and it is these patterns that the neuron would recognize.  
Training of such a neuron consists of strengthening the sparse set of 
synapses that best corresponds to all the patterns that the neuron should 
recognize, and all useful stored information subsequently resides in that 
pattern of synapse strengths. 



!

!

! ! ! ! ! +!

 Although many synapses in nature have negative strengths or are 
otherwise inhibitory (perhaps 10 percent of them), they apparently are not 
essential based on the high performance of our simulated models that have 
only non-negative binary synapse strengths.  Thus a weak positive synapse 
is not very different in a mathematical sense from a positively biased 
negative synapse since biases can be corrected by adjusting the neuron 
firing threshold.  Inhibitory synapses undoubtedly improve neuron 
performance in unknown ways, perhaps by counteracting over 
generalizations during pattern recognition, or by improving system 
efficiency. 

 We assume that the basic unit of input information processed by a 
single neuron is a binary pattern of nearly simultaneous excitation spikes; 
each input is either a spike or not, in each nominal 1-millisecond period.  
In the simplest case all spikes in a single excitation pattern arrive nearly 
simultaneously at the neuron cell body of interest.  We explore later more 
complex models that also respond to small time offsets, typically less than 
10-20 milliseconds, between spikes within a single excitation pattern.   
Modest pattern time separations greater than approximately 20 
milliseconds are then assumed to distinguish one excitation pattern from 
another.  We ignore neural models that learn and respond to time intervals 
between the successive arrival times of spikes at individual synapses.  This 
is because the mechanism is unclear and adequate neuron model 
performance is being obtained using a simpler model. Nonetheless, that 
signaling modality may sometimes be utilized. 

 The well-known brain-wave frequencies observed by EEG scalp 
recordings are plausible evidence of periodic pattern presentations, where 
different frequency bands may be associated with different cognitive 
functions or regions of the brain.  One band of interest is the ~40-Hz 
gamma band that is often active when animals are attentive to their 
surroundings (Steinmetz et al., 2000).  This response might correspond to 
successive pattern presentations at ~25-msec intervals.  The spikes 
composing such patterns might be synchronized by mechanisms such as 
visual saccades (Gollisch & Meister, 2008) or the passage of most inter-
regional neurons through the thalamus, a part of the brain known to have a 
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timing function.  Synchronization mechanisms for either patterns or spikes 
are not yet well understood. 

 All physical systems exhibit noise, and neural noise usually manifests 
as isolated spontaneous spikes, random fluctuations of the firing threshold, 
or random variations of spike amplitudes or arrival times prior to 
summation.  Since output spikes indicate pattern detection, any 
spontaneously emitted but meaningless output spikes are “false alarms” 
that limit the information that can be extracted from neurons, and spikes 
not generated during recall because of mistiming or inadequate amplitudes 
constitute missed detections.  These baseline false alarm and missed 
detection rates partially control memory performance. 

 Before birth the neurons start to multiply and take their assigned 
places within the brain, where their structural details then adapt to the local 
task.  Most wiring that connects neurons appears visually to be random and 
somewhat dynamic.  New connections between neurons are continually 
being formed, particularly during youth, and these synaptic connections 
typically eventually atrophy so that the net number of connections in the 
brain changes only slowly, reaching a peak in midlife.  New neurons also 
continually form and atrophy, as do synapses, but on a much slower and 
perhaps decadal time scale. 

   At the system level the brain is divided into functional regions that 
perform visual, auditory, tactile, somatic (smell), motor, memory, and 
other functions; some regional boundaries are visible upon dissection and 
some are not.  Although both cortical neuron characteristics and their 
connection patterns vary from region to region, most cortex has six visibly 
defined layers of physically differentiated neurons within its ~2-mm 
thickness where this structure exhibits relatively few visible differences 
across all cortex.  Generally the lower neural levels perform operations that 
are more at the pixel and feature level and are often localized in space, 
time, or frequency, while higher levels recognize more complex and less 
local objects and concepts (Freiwald & Tsao, 2010).  Additional features of 
neural networks are explained when they are introduced. 
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1.3 Relevance of simple models to real neurons and networks 

 The contributions of numerical models to neuroscience and to 
understanding the limits of the abilities of real neurons to compute and 
communicate have unfortunately been limited, placing this approach at a 
perceived disadvantage despite its potential. 

 For example, many neuroscientists ask how simplified numerical 
models of neurons and neural networks could contribute useful 
understanding since they differ so markedly from real neurons.  One 
answer to this important question is that if the behavior of simple 
numerical models is a subset of the achievable complex behaviors of real 
neurons then such model studies can establish an approximate lower bound 
to real performance.   If that lower-bound performance is good, such 
models can be illuminating and may suggest new questions for 
experimental or theoretical study.  The dependence of the performance of 
“good” neural models upon neural parameters can also be illuminating, as 
discussed later. 

 Unfortunately, we know of no neural models prior to those presented 
here that are arguably consistent with both observed neural behavior and 
sub-second learning and recall.  For example, many fast-learning models 
invoke training signals of unknown origin.  It is important to note that 
modulation of “learning readiness” is not a training signal for teaching 
specific excitation patterns or classification rules.  Learning readiness 
simply enables large groups of neurons to learn whatever excitation 
patterns they see when the animal is in an alert or excited state. 

 The basic cognon model presented later assumes only that a neuron 
spikes when the sum of its concurrent inputs exceeds a threshold, and that 
if a neuron is learning ready, then an output spike can modestly strengthen 
those synapses that contributed to that spike; both these general neural 
properties are well known and are discussed later (Koch, 1999).  As 
simulations will show, our basic-model performance levels can be quite 
high with few obvious requirements for further improvement in metrics 
such as bits/neuron, bits/synapse, bits/neuron/second, learning and recall 
speeds, etc. 

 Another concern of many scientists is that new models should be 



!

!

! ! ! ! ! $$!

carefully linked to their predecessors so that the historic flow of the field is 
evident and the reasons for different conclusions become apparent.  This is 
a reasonable desire and is the existing paradigm within physical 
neuroscience, but if a new numerical model is promising and well 
defended by simple repeatable experiments, then relating it to extensive 
prior art based on fundamentally different assumptions can be a counter-
productive diversion.  This is the view taken here, and references to such 
work are provided instead of reviews. 

 This issue of prior art particularly arises with respect to the 
information theory metric chosen later.  The choice made here is the 
unique Shannon metric (Shannon, 1948) that applies when: 1) the desired 
information is the “taught” information that can be recovered by observing 
the model’s outputs for all possible input excitation patterns, and 2) the 
only information provided by a neural spike is that the excitation pattern 
responsible for that spike had excited approximately the same synapses 
that had been strengthened earlier as a result of seeing similar excitation 
patterns when the synapses were plastic and learning-ready.  No other 
learned-information storage and recovery mechanism is assumed for the 
basic neuron model offered here. 

 In contrast, the prior art often assumes another information transfer 
process or metric is involved that may include information residing in the 
time interval between two consecutive spikes or perhaps some information 
unrelated to the recallable learned information.  For example, many such 
papers evaluate Shannon information and rate distortion metrics based on 
the observed and modeled joint probability distributions of the inputs and 
outputs of mature neurons rather than on the success of the learning and 
recall process, which is a key metric in our study (Berger, 2003; Averbeck, 
Latham, & Pouget, 2006; Quiroga & Panzeri, 2009; Linsker, 1989; Parra, 
Beck, & Bell, 2009; Coleman & Sarma, 2010; Buesing & Maass, 2010). 

 Finally, there is the question of the utility of linking simple numerical 
models to non-repeatable natural experiments such as the novel waking 
visual anomalies (WVA) reported here (WVA last less than a few seconds 
when normal healthy subjects awake and are extremely rare)  and to 
various properties of hallucinations.  The utility of WVA was arguably 
demonstrated by its inspiration of our study of neural models using intra-
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pattern spike timing to boost neural performance, and by the WVA 
evidence discussed in Section 6.1 that humans may also exhibit high-speed 
reverse-time recall of visual memories, just as do some sleeping rats 
recalling maze-running experiences (Davidson, Kloosterman, & Wilson, 
2009).  The utility of relating these models to mild hallucinations in 
Section 6.2 is their arguable consistency plus the fact that the models 
suggest palliative remedies that appear effective in some cases. 

 

1.4 Overview of monograph 

 To facilitate readability, the more discipline-specific details are 
postponed to later chapters.  Chapter 2 presents the simple basic neuron 
model, which is broadly consistent with the minimum assumptions made 
by most other authors.  Initially only the recognition mechanism of the 
basic neuron model is presented and simulated in Section 2.2, followed by 
presentation and time-domain simulation of one possible neuron training 
model in Section 2.3.  Section 2.4 derives and discusses the probability of 
learning and false alarm.  Section 2.5 describes how multilayer neural 
networks might recognize patterns, while Section 2.6 discusses how it 
might learn. Section 2.7 introduces Shannon information theory to 
facilitate understanding of the mathematical performance bounds of such 
models, but postpones more complete discussion to Chapter 3.   

 Chapter 3 then extends the basic model by introducing the optional 
possibilities that: 1) neuron firing decisions might be performed within 
dendritic sectors (compartments) that independently sum their own synapse 
excitations and test that sum against their own firing threshold before firing 
the neuron, and 2) the relative timing of spikes within a single neuron 
excitation pattern (which might last 2-20 milliseconds) could further 
distinguish one pattern from another.  An additional learning model 
involving synapse atrophy is also introduced along with a derivation of the 
information theory metric used to compare the performance of the various 
neural models.  Each model is then simulated and the resulting 
relationships between the neuron model parameters and neuron 
performance are tabulated and converted to approximate polynomials.  
These polynomials suggest why optimum values of parameters such as the 
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firing threshold and firing rate might depend on the primary purpose of the 
neuron. 

 Chapter 4 links these results to the observed form and behavior of 
cortical neurons, although they vary so much that these links are only 
suggestive.  Chapters 5 and 6 are less quantitative and more speculative.  
Chapter 5 suggests how these neural models and network architectures 
might help explain cognition, and Chapter 6 explores in a limited way the 
potential utility of recently observed waking visual anomalies (WVA) for 
revealing additional information about cortical architecture and signaling.  
It also discusses experiments involving the initiation and termination of 
brief hallucinations that appear consistent with the qualitative discussion in 
Chapter 5 concerning cognition and that suggest possible clinical 
applications.  Chapter 7 then concludes with suggestions for future work. 



!

!

! ! ! ! ! $'!

 

 

 

Chapter 2 

Basic model 

 

2.1 Introduction 

 This chapter first postulates in Section 2.2 and then simulates in 
Section 2.3 the recognition performance of the simplest neurologically 
plausible single-neuron model that appears capable of learning novel input 
patterns instantly and later signaling each subsequent re-appearance with a 
recognition spike while largely ignoring most unlearned patterns.  Section 
2.4 presents some simple theoretical performance equations, and Section 
2.5 briefly discusses how single-neuron recognition performance could 
enable recognition of more complex patterns by large networks of such 
neurons. 

 Section 2.6 then adds a learning mechanism to this basic recognition 
model and defines the “cognon” family of neuron models.  Section 2.7 
defines a metric for the average Shannon information (bits/neuron) 
retrievable from a trained basic learning neuron, and Section 2.8 simulates 
its learning and recall performance.  It is shown that single neurons can 
produce output spikes in response to their input excitation patterns with 
low probabilities of error if they were exposed to those same patterns 
during prior sub-second learning periods.  The probability of responding to 
untrained patterns during recall can be made almost arbitrarily small, 
although at the expense of the total number of patterns that can be learned.  
This section then maximizes the Shannon information by optimizing 
certain learning parameters for various neuron models.  Extensions to these 
basic models presented in Chapter 3 yield still further performance 
improvements. 
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2.2 Basic recognition neuron model  

 The basic recognition neuron model uses a well-known property of 
neurons: they “fire” by producing an output spike only when the sum of 
simultaneous (within a few milliseconds) identical input spikes weighted 
by each synapse strength exceeds some firing threshold, where the set of 
simultaneously excited neural inputs defines the neuron input “pattern.”  
The patterns recognizable by a neuron are therefore determined by that 
neuron’s input (afferent) synaptic weights.   

 This basic model is further simplified by assuming that all spikes have 
the same amplitude and time of arrival within a given excitation pattern, 
and that the binary synaptic weights exhibit only one of two possible 
values, say 1 and G > 1, without significant loss of generality.  Since the 
input patterns must be sparse in order to achieve selective pattern 
recognition performance, the number of simultaneously excited input 
spikes must be quite small compared to So, the number of synapses per 
neuron.  In nature, fewer than one-tenth of a neuron’s inputs are typically 
excited simultaneously. 

 The architecture of our basic neural model and the definition of its 
excitation pattern are explained in Figure 2.1, which illustrates a single-
neuron computational model.  It is important to note that this model has 
many inputs and only one output, each terminal being a neuron soma that 
may spike; thus it includes the axons of the input neurons but excludes the 
axons of the output neuron.  This shift away from a pure single neuron 
definition simplifies definition of our performance metric and the 
subsequent computations because there is only one output.  This model 
definition becomes particularly important when variable axon propagation 
delays can alter the input excitation delay pattern before spike summation 
by the neuron, as is explored in Chapter 3. 

 Each excitation pattern is a sequence of 0’s and 1’s that correspond 
respectively to the absence or presence of a spike at the afferent soma 
(input neurons) within the same nominal millisecond window during which 
spikes can superimpose efficiently.  The pattern is not the input to the 
synapses, which could differ if the paths between the various afferent soma 
and the summing point introduce additional different fixed delays, as is  
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Figure 2.1.  Neural model architecture and soma-based definition of 
excitation patterns. 

 
permitted in Chapter 3.  The output (zero or one) is defined by whether the 
neuron produces a nearly simultaneous spike at the neuron output (right-
hand side of the figure), where each output spike signifies recognition of 
the input as familiar. 

 Each neuron output spike propagates along a highly branched axon 
“arbor” that might extend to ~0.5 mm length or more.  Each small axon 
branch typically terminates in a synapse that connects to a dendrite on 
another neuron.  Dendrites are generally shorter and thicker than axons and 
connect to the cell body and “soma” where the basic neuron model sums 
the excitations over a sliding time window that we approximate using 
discrete time intervals of ~1 millisecond width (say).  If the sum equals or 
exceeds the firing threshold, then the basic neuron model fires.  In nature, 
patterns might be presented at intervals of tens of milliseconds, and 
perhaps at the well-known gamma, theta, or other periodicities of brain. 

 Figure 2.2 suggests the detection performance of a single basic neuron 
model for the very simple case where each input pattern always excites 
exactly N = 4 input neurons; this leads to simple mathematical estimates 
for the probabilities of detection and false alarm, where a false alarm 
results whenever an unlearned pattern produces a recognition output spike.  
The horizontal axis represents the time at which each excitation pattern 
might be presented for recognition, nominally within one-millisecond 
windows spaced perhaps 25 milliseconds apart, which would be consistent 
with EEG gamma waves. 

 The first two patterns, A and B, correspond to the two patterns this 
model learned to recognize earlier; learning is discussed later.  The black  
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Figure 2.2.  Examples of learned excitation patterns (A and B, black 
circles), synapses with strengthened gains G (crosshatched) and initial 
gains of unity (open circles), and test input excitation patterns (D-F, 
black circles) that reveal whether the neuron would spike when excited 
with those inputs during a recognition test.  Each excitation pattern here 
has 16 input neurons driving a different subset of 16 synapses of the 
basic recognition model every 25 milliseconds.  Patterns D, E, and F 
produce excitation sums of 2, 3, and 4, respectively, where only F 
causes a false alarm because the firing threshold equals four. 

dots indicate which input neurons fired for that pattern, and the open dots 
correspond to those that did not fire.  The third vector, C, indicates which 
corresponding synapses have strength G > 1 (gray circles) when recall is 
tested, whereas the rest have unity strength.  The next three random vectors 
(D, E, F) with N = 4 excited inputs (black circles) were not in the learned 
set and, except for pattern F, do not produce an output recognition spike; F 
produces a false alarm because it fires but was not taught. 

 Although it is apparent from Figure 2.2 that if So were to be increased 
to thousands (So = 16 here), and if N were to remain in the 4-60 range, 
many patterns sparsely populated with “one’s” could be reliably 
recognized by a single neuron with low false-alarm probabilities.  This is 
particularly so when any contributions from weak untrained synapses 
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during recognition are negligible because the ratio of trained to untrained 
synapse strengths is the gain G >> 1 during recall when patterns are being 
recognized. 

 The number of patterns that can be taught is limited by the risk of 
false alarms, which are reduced if the w learned patterns share an above-
average number of synapses, thereby minimizing the total number SG of 
strong synapses.  Initially SG is zero.  If the taught patterns are random then 
SG increases more rapidly with w, and the case where no two learned 
patterns utilize the same synapses is worse.  For example, in the worst case 
no more than w ! So/3N patterns can be safely learned, assuming So ! 3SG 
is safe.  This conservative limit suggests that when N = 40 and So = 12,000, 
then w < ~100 learned patterns; in practice the limit for w would be higher 
for random patterns, and still higher if the taught patterns shared an above-
average number of synapses in common while remaining distinct. 

 

2.3 Simulation results for the basic neural recognition model 

 Table 2.1 presents the average false-alarm probabilities pF that result 
for various assumed model parameters using the basic recognition neuron 
model described in Section 2.2 and the corresponding model simulator 
described in Section 2.9 and Appendix B.  In every case the conservatively 
listed pF equals the estimated pF plus its estimated standard deviation based 
on numerous independent simulations.  In cases where the estimated rms 
accuracy of pF is more than half the estimated value for pF, its entry is 
flagged with (*).  Discussion concerning the listed variable L (bits, 
recoverable learned information) is postponed until Section 2.8.  

 The low values for pF near 1 percent suggest that in these cases the 
basic learning neuron model should emit no more than one spontaneous 
erroneous spike every hundred patterns or so, or perhaps one every three 
seconds if 30 different random novel patterns are presented for recognition 
per second.  The high sensitivity of pF to both N and w is indicated by the 
effects of changing N = 4 to N = 5 in the second row of the table, and w 
from 1 to 2 in the third row.  This extreme sensitivity of pF also contributes 
to its sometimes relatively large standard variation when estimated using 
finite simulations. 
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Table 2.1.  False alarm recognition probabilities pF as a function of the 
basic recognition model neuron parameters 

 
 pF(%) N H  So w G L L/ So 
 0.00 4 4 10 1 100 8.5 0.85 
 10.9 5 4 10 1 100 3.3 0.33 
 18.9* 4 4 10 2 100 7.1 0.70 
 0.00 10 10 100 4 100 34 0.34 
 0.06* 11 10 100 4 100 34 0.34 
 0.25* 11 10 100 5 100 40 0.40 
 0.54 11 10 1000 60 100 429 0.43 
 0.46 11 10 10,000 600 100 4296 0.43 
 0.38 22 20 10,000 450 100 3296 0.33 

 0.09* 10 10 100 6 1.5 50 0.50 

 0.02* 11 10 1000 15 1.5 127 0.10 
 0.01* 11 10 10,000 160 1.5 1354 0.13 
 1.95 14 10 10,000 10 1.5 58 0.01 

Abbreviations:  pF  = false-alarm probability, N = # of excited inputs, H = 
firing threshold, So = # of synapses, w = # patterns presented for learning,  
G = ratio of  strong to weak synapses, L = recallable information. 
* Estimated rms accuracy of pF exceeds half the estimated value for pF 

 

 The value of pF can be made almost arbitrarily small for the larger 
neurons having So > 100 simply by reducing w so that very few synapses 
are strengthened.  In the limit where N = H and w = 1 the false alarm 
probability pF is zero while the probability of recognition for that one 
pattern is unity.  pF can also be reduced by increasing G, but once N/G 
becomes less than unity a worst-case set of N excited weak synapses 
cannot increase the weighted sum excitation by even one unit, and 
therefore cannot cause false firing and change the outcome. 

 The main result evident from Table 2.1 is therefore that the basic 
recognition neuron model can instantly recognize even hundreds of 
patterns with little error.  This is also true of the early Willshaw model 
(Willshaw, Buneman, & Longuet-Higgins, 1969; Graham & Willshaw, 
1999) and a few others, so instant recognition alone is not unique to our 
model.  The uniqueness lies instead in the relative neurological plausibility 
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of the fast learning mechanism proposed for training our basic recognition 
neural model, as discussed in Sections 2.6 and 2.8. 

 The entries in Table 2.1 are more accurate that the theoretical 
approximations derived later in Section 2.4, which suggest the underlying 
mathematical issues.  The details of the simulations are described briefly in 
Section 2.9 and in more detail in Appendix B.  The main assumption was 
that the neuron fires only if the sum of the weighted excitations for both 
strong and weak synapses equals or exceeds the firing threshold G!H: 

 G!NG + N – NG " G!H (2.1) 

where G!H is the firing threshold during recognition, NG is the number of 
excited inputs that align with the strengthened synapses having G > 1, and 
N – NG is the number of other excited inputs that align with synapses 
having G = 1.  In the limit where GNG >> N - NG, the neuron fires simply if 
the number NG of excited synapses with G > 1 exceeds the firing threshold 
H.  For cases in Table 2.1 where G = 100 this is always the case. 

 Earlier we defined N as the number of excited input neurons for a 
given excitation pattern, So as the number of afferent synapses for the basic 
recognition model neuron, G as the greater of the two possible synapse 
strengths, unity being the other, and G!H as the assumed firing threshold 
during recognition.  H is the lower firing threshold assumed for one basic 
learning model discussed later, and w is the number of patterns that the 
neuron model was trained to recognize. 

 The top part of Table 2.1 shows how both N and w are limited by the 
acceptable false alarm probability pF, and how larger neurons (larger So) 
can store many patterns before failing due to an excessive number of 
learned patterns w, which is equivalent to “over education.” 

 The lower part of Table 2.1 suggests that pF can remain low even 
when the synapse strength varies by only a factor of G = 1.5 between those 
synapses that characterize the pattern to be recognized and those that do 
not.  Such smaller values of G are roughly consistent with observed 
synaptic strength changes induced by learning, as discussed further in 
Section 2.6. 
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2.4 Probabilities of recognition and false alarm 

 It is useful to estimate the numerical probabilities of recognition pL 
and false alarm pF for given input patterns because the resulting equations 
provide some insight into the issues involved.  pL = pF during learning 
readiness because any random pattern that fires is immediately learned. 
These two probabilities are also key parameters needed later to compute 
the information L (bits) recallable by a single neuron.  For convenience as 
we continue, Table 2.2 summarizes the definitions of symbols used in 
Chapter 2. 

Table 2.2.  Symbols used in Chapter 2 

 Symbol  Brief Definition  

G  Ratio of strong synapse strength to weak synapse strength, 
binary approximation 

H  Number of synapses needed to fire a neuron 
I  Shannon information metric 
L  Recallable learned Shannon information;  
   here, the mutual information I( )X,Y  
M Number of neurons in a given neural network 
N  Number of excited synapses at the neural model input 
N’ Mean number of strengthened synapses in a neuron trained to 

recognize w patterns 
pF False alarm probability for a random excitation pattern 
pi  Probability of message i being sent during a communication 
pL Probability that a given taught pattern will be learned by a 

neuron  
R  Average number of different patterns presented before a given 

neuron fires 
SG Number of synapses on a single neuron that have strength G 
So Number of synapses on a single neuron of either strength 
w  Number of patterns taught while a neuron model is learning 

ready (not all taught patterns are learned) 
 

  Assume first that the only pattern the neuron has learned has N 
spiking input neurons out of the set of So, and that all these excited input 
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neurons feed those N synapses that have strength G > 1.   If the firing 
threshold is N!G then the basic neuron model will always fire when a 
previously learned pattern is presented.  If all patterns excite exactly N 
synapses, then to avoid false alarms for a one-pattern neuron we merely 
need a firing threshold N!G during recall that is sufficiently high that no 
other pattern can fire the neuron; for this special case it is sufficient that G 
= 1 + ", " > 0.   pF remains small even if the excitation pattern contains 
more than N excited inputs since the only patterns that will trigger a false 
alarm must excite all the synapses utilized by the one memorized pattern, 
provided that G is sufficiently large that all excitations of weak synapses 
add negligibly to the sum. 

   As the number N of excited synapses exceeds the number H of 
excited synapses needed to fire, and as G declines toward unity, the unity-
strength synapses contribute more to the excitation sum tested against the 
firing threshold G!H and the false alarm probability pF slowly increases.  
Numerical expressions for the exact detection and false-alarm probabilities 
can readily be derived for these cases but are not much more illuminating 
than the approximate expressions presented here and the simulation results 
presented in Section 2.8. 

 The false alarm probability pF also slowly increases as the number w 
of patterns taught increases, where we temporarily assume all taught 
patterns were learned.  We again simplify the math by assuming N = H.  
First we note that if w = 1, the probability that a given synapse in a set of So 

has strength G = 1 is simply (So – N)/So. If w > 1, this probability becomes 
[(So – N)/So]w.  If we further assume all learned patterns are independent, 
then the mean number of weak synapses is simply So[(So – N)/So]w where 
the total number of weak and strengthened synapses is So.  We define the 
number of strengthened synapses in a neuron trained to recognize w 
patterns as N’, and its mean is: 
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 Since Equation 2.2 ignores the fact that not all trained patterns may be 
learned, it tends to overestimate the number of strengthened synapses.  A 



!

!

! ! ! ! ! %&!

more accurate expression for pF incorporates the binomial probability 
distribution P[k] for coin-toss experiments, where k “heads” result after n 
coins are tossed, each with the independent probability p of being heads: 
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The notation: 
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k n kk

 (2.4) 

which is commonly called “n choose k,” signifies the number of unique 
ways one can choose k items from a list of n. 

 We separately define 0P[ ' | , , , , ]N S R G H w  as the probability that a 

neuron has N’ strengthened synapses after training on w patterns.  It can be 
found by means of the following recursive equation in w, where w is 
initially zero. 
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  (2.5) 

We define 0P[ ' | , , , ,0]N S R G H  to be unity when N’ is zero, and zero 

otherwise; this reflects the fact that all neurons start (w = 0) with no 
strengthened synapses. The first summation on index i is over the 
probability that the neuron has i strengthened synapses after w – 1 patterns 
are trained. This sum is then multiplied by the sum over j of the probability 
of an input pattern having both j active synapses among the i strengthened 
synapses and N’- j active synapses among the So - i un-strengthened 
synapses; the function " ensures that the sum includes only patterns that 
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would cause the neuron to fire.  ( )x!  is a threshold function that equals 

zero for x < 0 and equals one for x " 0; and the factor 

( )( )'j G N j H! " + # #  enforces the threshold condition that the 

weighted input summation must be equal to or greater than H.  The second 
term accounts for cases where N’ did not increase because the neuron did 
not fire. 

 We then calculate the expectation as the weighted sum: 
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 Figure 2.3 plots E[N’] as a function of w for four values of So/E[N’] = 
R, where the number of synapses is So = 1000 and R here equals 10, 20, 30, 
or 40 and is also a variable used later.  The figure makes clear that the 
desired fraction N’/So of strengthened synapses strongly limits w, the 
number of patterns taught and therefore learned.  N’/So is limited in turn by 
the maximum desired rate pF of false positive responses (an output spike) 
to a pattern that was not taught.  Figure 2.3 also plots the experimentally 
obtained values of E[N’] as a function of w using the simulator, which is 
described later in Section 2.9 and Appendix B.  In this case, the theoretical 
and experimental values for E[N’] are nearly indistinguishable.  

 The expression for pF incorporates ( )0P ' | , , ,fire N S R G H , the 

probability that a neuron with N’ strengthened synapses will fire during 
recognition of a random input pattern: 
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We can now define [ ]' |Fp N w as the probability that a neuron that was 

trained on w words and has N’ strengthened neurons will fire in response to 
an unlearned input as: 



!

!

! ! ! ! ! %(!

0 10 20 30 40 50 60
w

0.2

0.4

0.6

0.8

1.0
Fraction

Predicted R! 40
Predicted R! 30
Predicted R! 20
Predicted R! 10
Observed R! 40
Observed R! 30
Observed R! 20
Observed R! 10

 
Figure 2.3   Expected value of N’, the number of strengthened 
synapses, as a function of the number w of patterns trained. 

 

 ( ) ( )0 '', P ' | , , ,
2

= !F fire N
wp N w N S R G H  (2.8) 

We can now compute pF as: 
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 Figure 2.4 shows the false positive probability pF as a function of N’ 
when So is 1000, G is 1.9, and R =# E[N’]/So is either 10, 20, 30, or 40. The 
false positive probability increases slowly and linearly at first as N’ 
increases, and then faster when there are more strengthened synapses that 
the unlearned pattern might accidentally excite.  pF increases with R 
because N is then smaller with a relatively larger statistical tail.  

 Figure 2.5 shows the false positive probability pF as a function of the 
number w of patterns taught when S0 is 1000, G is 1.9, and R is one of 10,  
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Figure 2.4    Probability pF of a false positive response as a function of 
N’ = SG when So = 1000, G = 1.9, and R =#N/So. 

20, 30, or 40; only a fraction of those taught are learned.  The figure shows 
that greater sparsity (larger values of R = So/E[N’]) generally yields lower 
false positive rates pF for pF above ~0.1 percent.  Theory and experiment 
are in generally good agreement. 

 This result demonstrates that a single basic neuron model can fairly 
reliably recognize multiple random patterns for G < 2.    Bloom filters 
(Bloom, 1970) were developed within computer science and similarly 
extract multiple messages from sparse vectors.  Bloom filters differ, 
however, in that they assume N is fixed whereas it is binomially distributed 
in cognons. 

 It is obviously more efficient if only one or a few neighboring 
neurons learn any given excitation pattern, rather than having excess 
duplication among many.  Therefore it would be useful for a neuron that 
recognizes one pattern to suppress its nearby neighbors’ ability to learn the 
same pattern.  One common hypothesis is that this is partly accomplished 
if some fraction of all axons inhibit firing of nearby neurons by using 
synapses having negative strength.  
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Figure 2.5: Probability of false positives as a function of w when So = 1000 
and G = 1.9.  Predicted curves are gray. 

 
 But what fraction of all synapses needs to be inhibitory?  Let’s 
arbitrarily assume that reducing the summed excitation by 20 percent 
suffices to prevent or terminate a given neuron’s response to a pattern.  
This would suggest that roughly 10 percent of the input synapses have 
strength of -1, for example, instead of +1 or G. 

 This model assumes that the inhibition is applied to neurons at the 
same level as the originating neuron, so it can be tested by observing the 
degree to which inhibition is applied preferentially to real neurons in the 
same logical level or to those above or below.  If inhibition is applied 
primarily to higher or lower levels it would be more difficult to learn how 
to inhibit excessively redundant pattern learning because the out-of-layer 
neurons respond to different types of features.  If 10 percent of H synapses 
corresponds to one standard deviation of H when summed, this would 
imply that H ! 100.  Thus the percentage of inhibitory synapses, their 
computational purpose, and neural properties and connectivity are linked. 
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2.5 Recognition by layered spike-processing neural models 

 It is now natural to ask whether such recognition capabilities of single 
neurons are arguably sufficient for combinations of neurons to recognize 
still more complex patterns.  Such hierarchical recognition strategies are 
widely assumed (e.g., Freiwald & Tsao, 2010; Hawkins & Blakeslee, 
2004). 

 Imagine a multi-layer neural network where the first layer of neurons 
might have as its inputs black or white pixels in an extended visual field.  
Leaving aside for now the question of learning, the first layer might 
recognize only simple features within small local sectors of the visual field 
where, for example, first-layer neurons at the left end of the field might 
identify only those features confined to the left end.  Some first-layer 
neurons might also respond to full-field parameters such as luminance.  
Neurons in the second layer might accept inputs from first-layer neurons 
that span more of the visual field and recognize more complex features 
(i.e., features of features) and those in the third layer might accept inputs 
from second-layer neurons anywhere.  Obviously the complexity of 
features recognizable by third-layer neurons could be much greater than 
those recognizable by first-layer neurons. 

 Fortunately not all possible visual patterns are of interest.  For 
example, the first layer of neurons might recognize several basic strokes 
that comprise typical letters of the alphabet (e.g., short straight and slightly 
curved lines at various angles, blank regions, and dots) while single 
neurons in the second layer might combine these strokes into letters of the 
alphabet at different positions and third-layer neurons might each 
recognize a different set of learned patterns. 

 Although the human visual system and other sensory systems are 
more complex, the basic principle of hierarchical recognition should be 
clear along with the notion that relatively few patterns (e.g., letters, 
patterns, or faces of friends) are likely to be useful at the highest layers so 
that neurons at the higher levels may have roughly the same complexity as 
those at the lower levels.  Because the numbers of neurons in each level of 
the visual system are very roughly constant it follows that the numbers of 
recognizable patterns at each level may also be very roughly constant.  
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That is, the number of high-level concepts like “grandmother” might 
approximate the number of features recognizable at any lower level. 

 One of the main mathematical advantages of this basic neural 
recognition model has thus been demonstrated.  Despite its simplicity (a 
binary threshold-firing neuron), it instantly spikes when it sees one of 
several trained patterns and only rarely otherwise.  Its ability to recognize 
multiple patterns with low false-alarm probabilities is improved as the 
number of synapses, So, increases relative to the number N of spikes 
characterizing the trained patterns being recognized. 

It is obviously more efficient if only one or a few neighboring 
neurons learn any given excitation pattern, rather than having excess 
duplication among many.  Therefore it would be useful for a neuron that 
recognizes one pattern to suppress its nearby neighbors’ ability to learn the 
same pattern.  One common hypothesis is that this is partly accomplished 
if some fraction of axons inhibit firing of nearby neurons by using 
synapses that have negative strength. 

But what fraction of all synapses needs to be inhibitory?  Let’s arbitrarily 
assume that reducing the summed excitation by 20 percent suffices to 
prevent or terminate a given neuron’s response to a pattern. This would 
suggest that roughly 10 percent of the input synapses have strength of -1 or 
-G, for example, instead of +1 or G. 

This model assumes that the inhibition is applied to neurons at the same 
level as the originating neuron, so it can be tested by observing the degree 
to which inhibition is applied preferentially to real neurons in the same 
logical level or to those above or below.  If inhibition is applied primarily 
to higher or lower levels it would be more difficult to learn how to inhibit 
excessively redundant pattern learning because the out-of-layer neurons 
respond to different types of features.  If 10 percent of H synapses 
corresponds to one standard deviation of H when summed, this would 
imply that H ! 100.  Thus the percentage of inhibitory synapses, their 
computational purpose, and neural properties and connectivity are linked. 
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2.6 Basic spike-processing neural learning model 

 So far we have seen that the identities of learned patterns can be 
imbedded in the input (afferent) synapse strengths, e.g. unity versus the 
gain G, but we have not discussed how this basic neural recognition model 
could learn new patterns or determines which ones to learn. 

 The main constraint we impose for any computational learning model 
is that it must support sub-second learning in a manner arguably consistent 
with neural observations.  Our basic learning model utilizes a simplified 
form of spike-timing-dependent plasticity (STDP) for which any spike that 
arrives in a timely way so as to help trigger an output spike instantly 
strengthens its synapse from a weight of unity to G (G > 1), as discussed  
earlier.  Since the basic model is binary, no other synapse strengths are 
allowed.  We designate this as the synapse-strength (SS) learning model. 

 The assumed SS learning mechanism is that when a learning-ready 
neuron is being trained, any pattern that excites an output spike also 
irreversibly strengthens the weights of all contributing afferent synapses 
from 1 to G.  The neurological basis for this assumption is that spike-
triggered dendritic back-propagation is known to strengthen afferent 
synapses (Markram, Lubke, Frotscher, & Sakmann, 1997; Bi & Poo, 
1998).  Although it is unknown how markedly synapse strengths can 
change in vivo based on a single spike, G values less than two seem 
arguably plausible and consistent with limited observations; the simulation 
results presented later in Tables 2.3 and 2.4 show that these values yield 
acceptable learning and retrieval performance. 

 This “instant learning” model avoids the mathematical NP-complete 
back-propagation training time barrier (neuron learning times increase 
roughly exponentially with the number of synapses per neuron) because 
learning is accomplished almost instantly within a single neuron rather 
than requiring tedious interactions between pairs of neurons.  This roughly 
assumes that any pattern presented to a neuron while it is learning ready or 
plastic merits memorization. 

 This SS basic learning model raises two key questions: 1) what 
neurological mechanisms might permit a transition between the neuron’s 
normal state where it is merely seeking to recognize input patterns, and its 
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learning-ready state where it seeks to memorize all patterns, or the fraction 
pL, that trigger an output spike, and 2) what cognitive means might select 
those time intervals and cortical regions that should undertake 
memorization to promote animal well being? 

 Although neuron firing thresholds in nature vary with time, they are 
difficult to observe experimentally.  In the absence of contrary data the 
basic SS learning model therefore simply assumes that the neural firing 
thresholds in those cortical regions being trained are temporarily lowered 
slightly from their recognition level of G!H to H during learning readiness, 
thus increasing pL, the probability of learning.  With lower firing thresholds 
it becomes much easier for novel patterns to fire the neuron and thereby be 
learned. 

 But what regions of the cortex are being trained?  One clue may be 
the instantaneously active but spatially constrained regions revealed by 
functional MRI images (fMRI).  fMRI responds primarily to local 
metabolic activity that indicates currently active areas where firing 
thresholds could plausibly be temporarily altered.  Another possibility is 
that astrocytes might additionally modulate the firing threshold for those 
neurons to which they are connected.  Astrocytes are glial cells intimately 
mixed with neurons and that receive inputs from both the blood stream and 
local axons and that link to dendritic spines near synapses; they are also 
known to modulate plasticity and learning (Volterra & Meldolesi, 2005; 
Panatier et al., 2006). 

 We saw earlier that if G were sufficiently large, neurons could 
recognize many trained patterns while still exhibiting small probabilities of 
false alarm due to untaught signals.  Therefore we assume here for 
computational simplicity that for any value of G the firing threshold is 
either its learning-ready value of H or its non-learning recall value of G!H.  
This assumption preserves the ratio between the firing threshold and the 
weighted sum for any recognizable pattern since both are multiplied by G.  
Other synapses with unity weight are therefore disadvantaged by a factor 
of G where, constrained by homology, the simulated optimum values for G 
presented later in Section 2.8 often lie in the range 1.3 < G < 1.8, which is 
arguably consistent with in vivo observations; without homology, higher G 
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values generally perform better although values below 2 generally perform 
nearly as well (see Table 2.3). 

 This basic learning neuron model makes the simplifying assumption 
that synapses do not increase in strength when the neuron is not learning 
ready; omitting this assumption would lead to optimum values for G 
somewhat greater than those presented later in Tables 2.3 and 2.4 in 
Section 2.8, and these values would increase monotically with time as all 
synapse strengths eventually become equal to G.  Since having the same G 
for all synapses is clearly suboptimal it seems more reasonable to assume 
that learning readiness of neurons is somehow controlled so that w does not 
exceed its optimum limits. 

 This basic learning SS neuron model is supplemented by another 
neurologically plausible instant learning model in Section 3.1 that may 
operate in combination with an SS mechanism.  The first instant learning 
neural model, however, was the Willshaw model (Willshaw, Buneman, & 
Longuet-Higgins, 1969; Graham & Willshaw, 1999), which assumed that 
learning was accomplished by applying simultaneously to both the inputs 
and the outputs of a layer of neurons a pair of patterns that were to be 
associated.  Afferent synapses that fired concurrently with their output 
neuron during training were then irreversibly strengthened from zero to 
unity.  The difficulty with the Willshaw model is that there is as yet no 
arguably plausible useful source for the necessary output excitation 
patterns. 

 In contrast, our basic learning neuron model explicitly uses only the 
neuron input excitation patterns for providing this information, where the 
probability for learning a pattern during learning readiness is generally less 
than one.  Learning is enabled by a separate learning readiness signal that 
either lowers the firing threshold or, equivalently, raises the general 
excitation and number of spikes produced in that neural neighborhood, 
thus positively biasing sums computed there, albeit with additional shot 
noise (shot noise arises when one sums E random events; the sum’s root-
mean-square [rms] variation commonly approximates E0.5). 

 The efficiency of learning can be further increased by the same or a 
separate signal that enables synaptic plasticity only when that cortical 
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region is sensing patterns with survival implications or even paying 
attention.  An example of a survival-relevant hormone is adrenaline, and a 
likely cellular means for altering plasticity in neurons is astrocytes, as 
discussed above. 

 Although all “instant-learning” models can learn excitation patterns 
upon one exposure, slower learning models could utilize repetitive 
exposures, each of which triggers a smaller change in synaptic strength 
(Milner, Squire, & Kandel, 1998; Markram et al., 1997).   

 At this point we can define the cognon family of neuron models and 
its major variants and abbreviations.  A cognon is a neuron model that for 
each nearly instantaneous excitation pattern at its afferent synapses: 1) 
weights each incoming constant amplitude spikes by its corresponding 
synapse strength and if the summed result exceeds a firing threshold that 
may vary with time, then the neuron fires its own spike; no more than one 
spike arrives at each synapse per excitation pattern, 2) increases the 
strength of those synapses that had not yet reached maximum strength and 
that contributed to the generation of an output spike while the neuron was 
learning ready, and 3) reveals no more information per output spike 
beyond the fact that the responsible input excitation pattern was probably 
among those exposed to the neuron earlier when it was learning ready. 

 Two major categories of cognons are the cognon-basic (CB) models 
described above, and the cognon-extended (CE) models that add to the CB 
models such possibilities as C > 1, D > 1, and additional but similar 
learning models. 

 The next step is to validate the basic cognon learning model using 
simulations, but it is useful to have one or more performance metrics, one 
of which can be the Shannon information (bits) that can be learned and 
then recalled by a single basic neuron model employing “synaptic strength 
learning” (SS). 

 

2.7. Shannon information metric 

 Given that simple neurons can respond with spikes to learned patterns 
while not responding to most others, what is the Shannon information 
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(Shannon, 1948) that can be extracted from those neurons?  Such 
information is commonly measured in bits, where one bit equals the 
information conveyed by one flip of a random coin; this is a widely used 
measure for information storage and communication rates.  Shannon 
defined the average information I in a representative message or pattern as: 

 
(bits)  ! i 2 i

i
I = - p log p

 (2.10) 

where pi is the probability that pattern i constitutes the message.  In the 
ideal limit where N = H and only one pattern is learned, only that learned 
pattern can always be recognized perfectly, and there can never be any 
false alarms despite there being 2So – 1 possible false patterns.  To 
communicate the maximum information, all such perfectly recognizable 
patterns should be equally likely to be sent or learned.  In this case a single 
such correctly recognized learned pattern conveys So bits: 
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I = - 2 log 2 S 2 S
 (2.11) 

 Thus the number of bits recallable from a binary neuron cannot 
exceed the number of its binary synapses, So; this is also intuitively 
obvious without reference to the equations.  Nor is there any other useful 
way to extract information from such a simple static neuron—it either 
spikes in response to an input pattern or it doesn’t; it has no ability to 
distinguish time sequences.  If the messages are not equally likely, then the 
sum in (2.11) is diminished because the full message space is not being 
used efficiently. 

 This upper bound on I for a perfectly trained binary neuron assumed 
perfect recognition.  In fact, false alarms reduce I = L, as derived in 
Section 3.2.  Moreover, neurons may not learn perfectly every pattern they 
see during training.  Before discussing learning models in more detail let’s 
quickly define recallable learned information L (bits) for a simple binary 
neural model that learns new excitation patterns with learning probability 
pL # 1. 
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 The recallable learned information is the mutual information 
 = I( )L X,Y  (bits) between the set#X of possible excitation patterns that 

was taught to single neurons, but not necessarily learned, and the set#Y of 
patterns that each neuron recognizes, but was not necessarily taught.  The 
same mutual information metric was applied to neurons by Barrett and van 
Rossum (2008).  Since the details of this equation are not critical to a 
general understanding of the model and its performance, they may be 
skipped for now if they are obscure.  The main point is that the maximum 
taught information L (bits) recallable from such simple neural models is 
reduced by failures to learn what was taught (i.e., the probability of 
learning pL < 1) and by responses to patterns that were not taught (i.e., the 
false alarm probability pF > 0).  Equation 2.12 is derived briefly in Section 
3.2 and more thoroughly in Appendix B, and is: 

 2 2
1-(1- )log + log  bits
1-

! "
# $ %

& '
L L

L L
F F

p pL w p p
p p   (2.12) 

where w is the number of patterns taught but not necessarily learned. 

 The most interesting result revealed by Equation 2.12 is that the 
recoverable information L is zero if pF " pL since L cannot be negative.  
This makes sense.  If the neuron responds only to the fraction pL of taught 
patterns during training, and the response rate during recall is the same for 
random patterns as for those learned, then there is no way to distinguish 
learned information from noise since they respond with the same statistics.  
The CB neural model ensures that pF  < pL by increasing both the original 
strength of the trained synapses and the firing threshold during recall by 
the factor G, which reduces pF.  The Willshaw model and the synapse 
atrophy (SA) CE learning model introduced later effectively do the same 
with G # $. 

 The total information recoverable from any neural network containing 
M neurons is always bounded from above by ML, where L is the average 
information recallable from each neuron.  This is analogous to computer 
memories for which the total recoverable information in bits cannot exceed 
the sum of the information in each subunit of that memory. 
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2.8 Simulations of the cognon basic (CB) learning model 

 The simulations of the CB learning model presented here arbitrarily 
assume that: 1) the number of afferent synapses is fixed at So, 2) the 
probability that any given synapse is excited for any particular excitation 
pattern is 1/R and is independent and identically distributed among 
synapses and patterns, 3) the learning-readiness firing threshold is H and 
the threshold during recall is G!H, and 4) the number of taught patterns is 
w, where not all taught patterns are learned.  The results are expressed in 
terms of the probabilities of learning pL, the false alarm probability pF, and 
the maximum stored information L, as given by Equation (2.4). 

 The values for pF presented in Table 2.1 were based on the given 
parameters N, H, So, w, and G, which were not numerically optimized.  
Optimization is now possible because the metrics L (bits/neuron) and L/So 
(bits/synapse) introduced in Section 2.7 are directly relevant to neuron 
pattern recognition performance.  For illustrative purposes we fixed the 
values of So and H while the variables R, w, and G were chosen to 
maximize L and L/So for each such combination of inputs.  The results are 
shown in Table 2.3, where the probability of false alarm is the sum of pF  
and its rms accuracy as estimated from the scatter among many results. 

 These optimizations were for representative values of H, So, and R 
that arguably overlap those of real neurons, at least partially.  The 
optimized parameters w and G were restricted to discrete values in any 
combination, i.e.: w = {10, 20, 30,…,90, 100, 200, 300,…, 900, 1000, 
2000, 3000, …, 10,000} and G = {1.0, 1.1, 1.2,.…1.9, 2.0, 2.2, 
2.4,…,,4.0}. 

 The main result of Table 2.3 is that the CB neuron model can recall 
157 bits of information if there are 1000 synapses (pF = 1.25%) and 33 bits 
if there are 200, which corresponds to approximately 0.16 bits per synapse 
when G = 3.6.  Even with the synapse strength ratio G as low as 1.9 this 
model can recall 104 bits from 1000 synapses (pF = 2.4%) and 9 bits from 
200 synapses, which corresponds to 0.1 and 0.045 bits per synapse, 
respectively.  These values for bits/synapse are on the same order as  
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Table 2.3.  Values of L, pF, and pL as a function of the CB model 
parameters. 

L pF(%) pL(%) H  G So  R w  

 710 1.42 72.3 30 4.0 10,000 303 200 
 448 0.10 85.3 105 4.0 10,000 86 70 
 315 0.18 0.52 40 1.9 10,000 250 100 
 157 1.25 18.9 5 3.6 1000 333 300 
 112 1.06 0.42 10 3.6 1000 111 60 
 104 2.42 18.8 5 1.9 1000 333 300 
 94.3 0.52* 55.4 15 4.0 1000 66 30 
 33.0 2.10* 28.0 5 3.6 200 57 40 
 23.1 3.02* 56.3 10 4.0 200 20 10 
 9.52 1.57* 25.0 20 1.9 200 12 10 

       * pF rms > 0.5 pF  

estimates made for other neural and information models (Baldassi, 
Braunstein, Brunel, & Zecchina, 2007; Barrett & van Rossum, 2008). 

 The values in Table 2.3 are lower than those in Table 2.1 because: 1) 
G = 1.9 and G = 4 are both more consistent with neural observations and 
well below the value of 100 assumed in Table 2.1, and 2) the number N of 
excited synapses was specified in Table 2.1 but is now binomially 
distributed about its mean So /R.  As a result there are learning losses, 
particularly when N < H so that pL = 0, and extra false alarm losses when 
the tail of the N distribution exceeds H by larger margins.  In Table 2.1 
there were no learning losses since pL = 1 because the learned patterns 
were imbedded in the synaptic weights from the beginning. 

 The value of having 10,000 synapses is more apparent for the 
extended cognon models discussed in Chapter 3. 

 Table 2.3 also suggests that lower values of H permit storage of more 
information per neuron and synapse, which makes sense since more unique 
patterns can be learned before the number of strengthened synapses 
becomes so large that false alarms preclude more learning.  The table also 
suggests that the product H!R ! So, which also makes sense because an 
average of So/R synapses fire per pattern and this should approximate the 
firing threshold H. 
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 The values of H and R presented in the table are arguably consistent 
with nature.  For example, in real neurons the firing threshold H might 
reasonably range between ~60, a nominal ratio of threshold-to-single-spike 
voltages, and ~9, a nominal ratio of threshold-to-single-spike currents, the 
currents being more relevant to slower signals (Koch, 1999).  The number 
of synapses So varies among species and neuron types and can exceed 
100,000 in humans.  If the period T between excitation patterns 
approximates that for gamma waves, say 30 msec, then observed ~150-
3000 msec intervals (say) between consecutive spikes for attentive animals 
would imply that the average rate R lies roughly between 5 and 100 input 
patterns presented per output spike produced.  Most values in the table are 
consistent with these estimates. 

 There is a potential constraint we have ignored, however.  This 
follows from the observation that average neuron-spiking frequencies are 
roughly similar across the active cortex even though spike-based signals 
propagate across many logical layers when traversing multiple regions, like 
V1, V2, etc., in the visual cortex.  For spike frequencies to be 
approximately layer-independent requires that the average value of R be 
approximately the same at both the input and output of any neural layer, a 
constraint we arbitrarily call “homology.” 

 Homology requires that both the input and the output firing rates per 
pattern presented approximate 1/R (R = patterns presented per spike 
elicited).  But during learning the output spiking rate is 1/R ! pL 
(probability that a presented pattern will be learned).  This simple 
additional constraint leads to stable maximum values of the expected 
values of L and the associated optimum values for pF, pL, G, w, So, and SG 
as functions of H and R, as tabulated in Table 2.4.  SG = E[N’] corresponds 
to the average number of synapses that have strength G after w patterns 
have been taught (but not necessarily learned, since pL < 1).  

Interesting conclusions drawn from this table include: 

1) The optimum ratio between the minimum and maximum binary 
synapse strengths varies between 1.3 and 1.8 for these examples, which is 
arguably within the range observed in nature. 
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2) Up to ten bits can be learned and recalled by the CB neuron model 
when it is constrained by homology (say 0.6 < R!pL < 1.2).  The 
corresponding bits per synapse range up to 0.048.  The homology  

Table 2.4.  Maximized values of L (bits/neuron) as a function of the CB 
model parameters and constrained by homology (pL!R ! 1) 

 
 H  R  L So  SG  G pF (%) pL!R w 

 10 10 4.8 70 12 1.8 1.6* 1.14 10 
 10 20 7.8 120 19 1.7 0.84* 0.84 40 
 10 30 6.7 150 23 1.8 0.19* 0.53 100 
 10 40 6.4 200 20 1.6 0.08* 0.78 90 
 20 10 6.4 160 28 1.8 1.04* 1.16 10 
 20 20 8.9 280 50 1.7 0.85* 0.73 50 
 20 30 5.8 360 49 1.5 0.06* 0.49 100 
 20 40 4.7 480 40 1.5 0.01* 0.59 100 
 30 10 5.5 240 59 1.8 2.4* 0.72 20 
 30 20 6.4 420 66 1.3 0.45* 0.31 100 
 30 30 9.9 630 91 1.4 0.22* 1.28 100 
 30 40 8.8 840 99 1.7 0.03* 0.73 100 
 40 10 4.8 320 66 1.4 0.71* 0.62 20 
 40 20 10.5 640 207 1.4 0.73* 1.85 40 
 40 30 4.87 840 197 1.7 0.09* 0.71 100 
 40 40 3.41 1120 93 1.5 0.00* 0.71 100 

 * pF rms > 0.5 pF 

  

constraint appears to be the limiting factor relative to the superior results of 
Table 2.3 since all parameters other than H and R are roughly optimized in 
Table 2.4. 

3) Under homology the maximum number L of recallable bits per neuron 
is surprisingly independent of its firing threshold H and the firing rate per 
random input pattern, 1/R, whereas the bits per synapse vary two orders of 
magnitude. 

4) The optimum false alarm probability pF under these assumptions is 
roughly 1 percent while the corresponding learning probability pL lies 
between 1.5 and 11 percent. 



!

!

! ! ! ! ! '-!

5) The number w of patterns taught varies between 10 and 100, which 
corresponds to pLw patterns learned, or roughly between one and three 
patterns per homologous neuron. 

6) The optimum fraction SG/So of strong synapses when fully trained lies 
between 8 and 32 percent. 

7) To learn 10 bits might require a minimum of $ = R/%pL seconds, where 
$ is the pattern presentation frequency; if $ = 30 Hz, then $  " ~7 seconds 
for a homologous neuron model with 840 synapses. 

8) Less apparent from Table 2.4 is that most patterns are learned in the 
extended (fat) tails of output spiking-probability distributions where 
averages of pF across multiple trials are more volatile than they would be 
for Gaussian distributions.  This is why the rms values for pF are often 
large compared to pF, as indicated by “*”. 

 Comparison of Tables 2.3 and 2.4 makes clear that the assumed form 
of homology substantially reduces the information capacity of these CB 
neurons.  This result raises the question of the time scales on which 
homology might be obeyed, because the results in Table 2.3 without 
homology were roughly an order of magnitude better. 

 Homology was imposed on the CB model to ensure that the average 
spiking rate for Table 2.4 was approximately the same at all levels of a 
neural network, consistent with cortical observations.  But if the spiking 
rate were high (low values of R) only during learning, and were lower 
during recognition (higher values of R), neural performance could be 
significantly improved.  Since only one layer is presumably trained at a 
time in a given local area, temporarily high values of R during learning 
could be consistent with long-term homology. 

 For example, by dropping the threshold H sufficiently during 
learning, nearly every pattern could be learned so pL > 0.5.  Then by raising 
H during recognition, R could become quite high and thus violate the 
homology constraint pL!R ! 1.  But such bursts in R would be averaged 
over long time periods and go unnoticed when computing long-term pL!R.  
For example, if  pF  = 0.01, pL  = 1, and pF!R = 0.3 (corresponding to useful 
pF), then the homology metric pL!R = 30 rather than 1, which significantly 
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increases L and most other useful neural metrics above the values of Table 
2.4 (see Table 2.3). 

 

2.9 Summary and next steps 

 Chapter 2 has shown how a simple binary threshold-firing neural 
model using binary synapse-strength (SS) learning can learn multiple 
binary patterns by one-time exposures to each such pattern sufficient to 
generate an output spike.  When synapses learn new patterns they are 
strengthened irreversibly from unity to G > 1 as a result of one (or more) of 
its spikes contributing to the sum responsible for the output spike produced 
when that pattern is learned. 

 Only a fraction pL of such “taught” patterns are learned, however, 
because not all patterns can generate an output spike.  This is because 
spikes are generated independently and randomly by the input neurons, and 
therefore the number N of incident spikes that defines a pattern is a random 
variable and is sometimes below H, which precludes learning unless some 
pattern-excited synapses have already been strengthened. If the firing 
threshold increases to more than H!G during recall, the number of these 
few learned but unrecallable patterns can perhaps be diminished.  Small 
learning probabilities pL could be readily compensated if the density of 
neurons within each layer is sufficiently high that at least a few neurons 
within a given area typically responded to any pattern of interest.  Once 
learned, such patterns should always elicit an output spike from at least a 
few neighboring neurons when these patterns are presented during recall. 

 The distinction between learning and recall for SS learning is that the 
firing threshold is H during learning and G!H, G > 1 during recall, which is 
necessary in order to reduce the false-alarm probability pF significantly 
below the probability of learning pL; otherwise, information theory 
suggests in Equation 2.7 that useful information cannot be recovered. 

 To summarize further, this section demonstrated the significant 
mathematical advantages of this CB neural model.  It not only instantly 
responds with a spike to any of a set of trained patterns, but also can 
instantly train additional novel patterns by temporarily lowering its firing 
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threshold from its recognition value of G!H to its learning-ready value H 
during the training session.  Equivalently all spike amplitudes could 
alternatively be increased via neurotransmitters by the same factor G.  At 
the same time the false-alarm probability pF that an untrained pattern might 
erroneously trigger a recognition spike can be made sufficiently small by 
increasing G so that the learning metric L is not unduly degraded in 
Equation 2.12.  Moreover, the required value of G is arguably within the 
range observed in nature, i.e., less than a factor of two.  Further reductions 
in pF are available by decreasing the number w of patterns trained. 

 At this point skeptics might raise three issues that have ready 
responses.  First, this result is not just a theory since the model’s power to 
rapidly learn and later recall new patterns with high reliability and low 
false alarm probabilities has been demonstrated here by simulations readily 
duplicated by others (see Tables 2.1, 2.3, and 2.4 and Appendix B). 

 Second, although some might question the choice of information 
metric L, it follows directly from information theory and our minimalist 
assumption that the only information conveyed by an output spike is that 
the neuron saw a similar pattern during training or learning readiness.  
Other information metrics would apply if the time intervals between 
successive output spikes conveyed information, or if the probability of an 
output spike was a function of the time sequence of recent output spikes or 
excitation patterns. 

 Also, the utility of the cognon model lies in the speed and reliability 
of its learning and recall of complex patterns, independent of the definition 
of L.  Moreover, although single neurons have limited recognition 
capabilities, multiple neurons arranged in layers can collectively learn to 
recognize patterns of almost arbitrary complexity.  Such randomly wired 
neuron layers can be trained in succession shortly after birth when the 
environment is first viewed, as discussed in Section 2.6; training of any 
layer would generally begin at birth when the environment is first viewed, 
but not until its input layer were trained and no longer fully plastic. 

 Third, some current theories regarding cortex require neural outputs 
to characterize their excitation patterns in some way beyond a simple 
“spike or no spike.”  The CB model simulations presented here and their 
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high values for the associated Shannon information metric suggest this is 
not necessary, which is fortunate since there are no current plausible 
theories about how such a complex characterization of neural inputs might 
occur other than via the feedback model discussed later in Chapter 5, 
which employs this same CB model. 

 Chapter 3 revisits these issues more thoroughly and with a more 
elaborate neural model that allows for multiple fixed spike times within 
patterns and for dendritic compartments that can fire independently.  It also 
introduces new learning models and elaborates on possible similarities 
between these neural models and traditional neuroscience. 
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Chapter 3 
Full neural model 
 

3.1. Extensions of the cognon neural model 

 It is useful to see if extensions of the mathematical complexity of the 
CB model might have utility, particularly if experiments have suggested 
such extensions might have approximate counterparts in nature. 

 The first such extension follows from the observation that in nature 
some synapses can sum their excitations more effectively when those 
synapses are close together, while some may sum their excitations more 
effectively when far apart (London & Hausser, 2005; Rall, 1977).  We can 
roughly approximate such behavior by assuming there are C % 1 
“compartments” per neuron, and the synapse excitations are separately 
summed within each of them and tested against H during learning or 
against G!H during recognition.  If one or more compartments fire then the 
model neuron also immediately fires, and back-propagation within each 
firing compartment strengthens its untrained plastic synapses that 
contributed to that firing; all other synapses remain unchanged, including 
those that were excited within compartments that did not fire. 

 The second extension is more complex for it assumes that fixed 
differences in propagation times between neurons can introduce small time 
offsets in spike arrival times.  The consequence of this is that for each 
neural excitation pattern there may be more than one narrow time slot of 
roughly 1-3 msec duration within which the excitations are summed and 
tested against the threshold H (during training) or G!H (during recall).  
Many observations have strongly suggested that some neurons code spike-
based patterns using such variable delays (Brown, Kass, & Mitra; 2004, 
Kozhevnikov & Fee, 2007; Coleman & Sarma, 2010). 
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 If successive patterns are presented for recognition at a nominal 
period of 25 milliseconds, which characterizes the gamma band evidenced 
in EEG data, then a few such resolvable time slots would be available per 
pattern, permitting multiple summations and logic operations per pattern.  
We define D to be the effective number of resolvable time delays 
characterizing the spikes produced by a single neuron in response to a 
single pattern, and D’ to be the effective number of resolvable time delays 
characterizing the set of propagation paths and delays between the point of 
summation and the outputs (soma) of those neurons exciting the neuron of 
interest.  Thus, the total number of possible delays between the input 
neuron and the point of summation is D + D’ - 1.  Usually D’ > D if D > 1, 
for reasons discussed later.  Note that if C = D = D’ = 1, we simply have 
the CB model discussed in Chapter 2. 

 Figure 3.1 illustrates the extended CE model, analogous to Figure 
2.1.  The main additions are the explicit recognition that: 1) the cumulative 
time-invariant delay in the axon, synapse, and dendrite path conveying any 
particular spike can differ because of its unique link length, synapse 
location on the dendrite, or biochemical dynamics, and 2) the dendrite 
arbor may be divided into compartments that, in this mathematical 
simplification, fire and train independently, as discussed below. 

 

 

 

 

 

 

 

 

                                                                                                                                                                       

Figure 3.1.  CE model showing D possible excitation delays and D’ 
possible inter-soma propagation delays. 
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 A physically plausible dendrite compartment might, for example, be 
an independent dendrite branch feeding the cell body directly.  A neuron 
might have C such compartments, as discussed above. 

 Figure 3.2 shows how the pattern definition and timing in Figure 2.2 
might be altered if D = 2.  It explicitly shows how a single pattern might 
include some exciting spikes that are generated a little late so that they 
must be brought into coincidence by correspondingly shorter propagation 
times in their axon/synapse/dendrite link in order to sum efficiently to 
surpass the firing threshold.  Pattern A exhibits two spikes that leave their 
incident neurons a few milliseconds late; the horizontal axis of the figure 
represents time.  But pattern C shows that the delays in those two paths are 
correspondingly shorter so the generation and propagation delays cancel 
and coincidence results.  If they did not cancel, these spikes could not have 
contributed coherently to the sum that triggered firing during learning 
readiness; those synapses would therefore not have been strengthened at 
that time. 

 When the number D of possible small delay increments within a 
pattern exceeds unity, it implies that spikes arriving from separate input 
neurons must be well synchronized or they could be misinterpreted.  One 
possible mechanism is synchronization to an event earlier in the neural 
chain, such as might be initiated by a saccade (Gollisch & Meister, 2008) 
as the eye flicks back and forth, or by timing mechanisms in the thalamus 
or elsewhere. 

 Since information is embedded in the combination of relative delays 
between each of a pattern’s input spikes, and in the exact population of 
input neurons that constitute a given pattern fed to a given neuron, this type 
of pattern coding is designated a population-delay code and has been 
proposed by others (Bohte, 2004; Hopfield, Brody, & Roweis, 1998).  
Other proposed signal coding means include pulse rate coding, population 
coding, and delay coding (Berger & Levy, 2010); but we explore the 
consequences of only population coding (Averbeck, Latham, & Pouget, 
2006), which is used by the CB model, and of population delay coding, 
which is used by the CE model. 
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Figure 3.2.  Pattern timing diagram for D = 2.  Each pattern has 16 input 
neurons driving 16 synapses every 25 milliseconds.  Spikes (black circles) 
can arrive at D = 2 possible times, as illustrated, and to synchronize their 
summation requires that each delayed input spike must be compensated by 
a reduced propagation delay within the inter-soma path, as illustrated by the 
hatched circles in the inter-neuron delays shown in pattern C that indicate 
the strong synapses (G > 1) that resulted when this neuron learned both 
patterns A and B earlier (black circles).  Patterns D, E, and F are 
recognition test patterns (black circles) that produce excitation sums of G, 
4G = G!H, and G, respectively, where only pattern E causes a false alarm 
because four of its black dots correspond to four hatched dots in C. 

 

 The third extension of the CB model involves addition of a new 
learning mechanism, designated the synapse atrophy (SA) learning model.  
It can function alone or in combination with the synapse strength (SS) CB 
model, where the combination appears to be likely.  Such a combination 
can help reduce the average false-alarm rate of the synapse strength model, 
which arises partly from the fact that those synapses with reduced weight 
(unity) still contribute to the sum which is tested against the threshold G!H 
and can therefore cause the neuron to fire erroneously. 

 Little would probably be lost if those synapses that never contributed 
to a spike during learning, despite many opportunities, atrophied to make 
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space for new synapses.  Such continual replacement of less useful 
synapses with potentially more useful ones linked to other neurons could 
maintain the total number of synapses per neuron roughly constant over 
most of each neuron’s life.  The number of synapses on young neurons 
typically increases with time and then slowly declines as the neuron 
becomes old, perhaps after years or decades. 

 The SA learning model could also function alone without the SS 
learning model, and its performance then resembles that of the Willshaw 
model discussed in Section 2.4, which exhibits high-performance instant 
learning, particularly when there are many neurons of which only a small 
fraction is typically excited at once.  In both the synapse atrophy and 
Willshaw model all synapses have unity strength throughout training, but 
that strength becomes immortal if that synapse contributes to an output 
spike during learning, much as such synapses increase their strength to G 
for the SS model under similar circumstances. 

 In this case the learning probability pL and the false alarm probability 
pF remain equal, causing the recallable learned information L to be zero 
unless pF is reduced significantly.  pF is easily reduced if the mortal 
(unenhanced) synapses atrophy (strength becomes zero) prior to measuring 
recognition performance.  The SA simulation results presented later show 
the considerable benefits of such atrophy, as presaged by the early 
Willshaw results.  As mentioned earlier, the Willshaw model unfortunately 
did not propose a neurologically plausible learning process, unlike the CB 
model introduced here. 

 The next section derives the learned information metric L (bits) for a 
single neuron, which was introduced in Equation 2.3 and Section 2.7.  The 
derivation in Section 3.2 reveals some of the subtleties that lie behind the 
definition of information useful for cortical computations, but they need 
not concern us now with respect to the main thrust of this monograph. 

 

3.2 Issues in derivation of the information stored per neuron 

 We assumed earlier that the learned Shannon information L 
(bits/neuron) recoverable from a binary neuron could only be derived from 
observations of which excitation patterns excite the neuron to spike.  The 
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sequence of test patterns used to extract this information does not matter if 
such testing does not change any synapse strengths.  In this case L is the 
mutual information I( X,Y ) between the set#X of binary excitation patterns 
"taught" while the neuron was learning-ready and plastic, and the set#Y of 
those "learned" excitation patterns that stimulate output responses in non-
plastic neurons.  This neural mutual information metric has been used 
previously (e.g., Barrett & van Rossum, 2008). 

 A metaphorical example from communications theory is the 
following.  Assume that Alice (proxy for the environment) wishes to tell 
Bob (proxy for the neural network) something that Bob should know 
(memorize) about his environment, and that she does this by means of a 
single new neuron that she trains.  She trains that neuron while it is plastic 
by exposing it to a set of w patterns she chooses from a set of size z >> w.  
She can choose q = z!/[w!(z – w)!] possible unique pattern sets, where 
log2q (bits) is then the upper bound on retrievable information (Shannon, 
1948). 

 Bob then extracts that maximum information by exposing the neuron 
to all z possible patterns and noting which patterns produce recognition 
signatures and are therefore presumed to have been selected and taught by 
Alice.  Although information extraction could be tedious if all z patterns 
were tested, it can be greatly accelerated, perhaps even to ~1 bit/second, if 
the set of tested patterns is somehow restricted to that very limited set 
likely to occur in practice, as discussed later.  

   We earlier defined the learning probability pL as the probability that 
a taught pattern will be learned, and defined the false alarm probability pF 
as the probability that during recall Bob will see an output spike signature 
for a pattern that was not taught, where both the learning and recall 
imperfections reduce L below the theoretical limit log2q.  We assume that 
Alice and Bob know only the “name” of each pattern but cannot access the 
pattern’s more extensive binary description or otherwise determine which 
patterns are correlated.  They have access only to one isolated neuron at a 
time.  We further ignore any information related to the relative sequence of 
any two patterns presented during recall, since synapse strengths are then 
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fixed for both the SS and SA learning models so that the testing sequence 
does not matter. 

 Restricting the evaluation of recoverable information to that in a 
single neuron is useful because the total neural network system information 
cannot exceed the sum of the information recoverable from each neuron 
separately; correlations between neurons can only reduce that sum. 

 L can readily be evaluated under these assumptions.  Let xi and yi be 
binary (0,1), where xi = 1 signifies that the ith pattern was taught by Alice, 
but not whether it was learned, and yi = 1 signifies that the same pattern 
produces a spike signature for Bob.  Then, since time sequencing does not 
matter here, and for other reasons discussed below, the mutual information 
L (bits) is z times the mutual information L1 for each pattern alone: 
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where: 

 P{xi = 1} & pT << 1  (3.2) 

and where pT is the probability that Alice would teach a particular pattern 
(i.e., present that pattern to the neuron, which may not learn it), and 

 P{yi = 1| xi = 0} & pF (3.3) 

 P{yi = 1| xi = 1} & pL (3.4) 

 P{yi = 1} = pF(1 – pT) + pLpT (3.5) 

 The main result (3.6) follows by substituting (3.2)-(3.5) and simply 
inserting the related equations into Equation (3.1) while assuming pT << pF 
so that the Taylor expansion can be used, as detailed below: 
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where the number of trained patterns w replaces z because w ! pTz, and  
1/pT appears in the second factor of Equation (3.1), as detailed below.  pT = 
w/z is normally vanishingly small because z ! 2So where the number of 
synapses So in neocortical neurons typically exceeds 1000. 

 This derivation assumed that the sequence in which patterns are 
taught is irrelevant, which is strictly true on physical grounds for the 
synapse atrophy (SA) model mentioned above and simulated in Section 
3.2, for which all synapse strengths remain equal to one throughout 
training and only their mortality changes after all training ends.  The 
pattern sequence does not matter during recall because synapse strength is 
no longer plastic then.  Also, if only a vanishing fraction w/z of z possible 
patterns is taught, then the assumption in Equation (3.1) that mutual 
information is approximately additive is valid; note that L in Equation (3.6) 
is proportional to w << z, not to z. 

 When synapse strengths change during learning, as assumed for the 
CB and CE synapse strength (SS) models, the probabilities in Equation 
(3.1) become time dependent.  However, this mild time dependence does 
not materially affect L for the following reasons.  When a pattern is learned 
its associated synapses gain strength, thus slightly increasing the learning 
probability for subsequently taught patterns that use those same synapses.  
Consequently new learned patterns will tend to slightly resemble the 
cumulative ensemble previously learned so that the effective number of 
fully independent patterns will be less than z. 

 Since the sum in Equation 3.1 is approximately proportional to the 
ratio w/z, as derived below, therefore only w matters in Equation 3.6 and 
any reduction in z due to pattern correlations becomes largely irrelevant.  
The probability of confusion among the pLw learned patterns remains 
negligible compared to pF because w << z and because the patterns are 
individually quite sparse.  Thus any correlations among the w patterns are 
largely irrelevant so long as they are sufficiently distinct when being 
recognized. Sparseness means that patterns have relatively few 1’s, which 
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implies that the neuron firing threshold is small compared to the number of 
synapses. 

 As noted earlier, Equation 3.6 yields an important conclusion: no 
information L is recoverable unless pF < pL, which implies that the neuron 
must change state in some way between its nascent learning phase and its 
mature testing phase, as it does in both the SS (the threshold H increases 
during recall) and SA (unused synapses atrophy before recall) learning 
models.  Otherwise, if synapse strength is time invariant, both Alice and 
Bob will observe that the same fraction pL ! pF of all z patterns excites an 
output, yielding L = 0.  If learning increases synapse strengths so as to 
increase pL as more patterns are learned, then the initial value of pL applies 
to the requirement pF < pL.  A more complete version of this derivation 
appears in Appendix B. 

 Equation 3.6 is therefore a very important result because it shows 
that if a spike signifies only that the responsible excitation pattern had been 
seen during training, then a learning-ready neuron must either: 1) raise its 
firing threshold, 2) reduce all spike amplitudes, 3) eliminate some little 
used synapses, or 4) do something equivalent before useful information 
can be extracted. 

 

3.3 Simulations of the cognon extended (CE) model 

 Because the CE model now has more degrees of freedom, 
exploration of all possible variants would be tedious.  Therefore, only 
approximate optimizations of L are presented here, with and without the 
assumption of homology (constancy across multiple neural layers) in 
neural firing rates R or numbers of delays D, as explained later. 

 For convenience Table 3.1 summarizes definitions of the parameters 
used in the following discussions. 

 The first question involves how well the CE neuron model performs 
when the numbers of independent dendrite compartments C and available 
inter-pattern delays D exceed one.  Table 3.2 shows time-domain simulator 
input parameters and output results for neurons with 10,000, 1000, and 200 
synapses.  Each row of the table corresponds to a different set of the  
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Table 3.1.   Summary definitions of neural parameters 
 

  Parameter                              Definition             
C Number of dendrite compartments capable of firing independently 
D Number of possible time slots where neurons can produce spikes 
D’ Number of different time delays available between two neural layers 

Deff D for a boxcar delay distribution that has                                           
entropy = output-distribution entropy 

G High/low ratios for both the synapse strength Si and the firing threshold H 
during training 

H Firing threshold per compartment = required number of excited synapses 
of strength 1 

L Maximum retrievable information per neuron (bits), I[ ]X,Y * 

pF Probability that a mature neuron will fire for an untrained pattern 
pL Probability of learning a random pattern presented during plasticity and 

learning readiness 
pR Probability that a synapse will ever be strengthened; pR = E[Sm/So]* 
pT Probability that a random pattern in Z would be presented during training  
R Average number of patterns per afferent synapse spike; R = 1/pL for 

homology 
So Initial number of synapses per neuron  
Sm Number of maximum-strength synapses after plasticity ends 
T Period of spike waves (say ~30 msec in nature; perhaps %-1) 
w Number of patterns (words) taught (presented during plasticity and 

readiness) 
W The value of w that maximizes L = I[ ]X,Y * 

z,Z Number or set of possible mature input patterns 

* E[ ] is the expectation operator and I[ ]X,Y is the mutual information 
between the vectors#X and#Y. 

 

neuron input parameters So, C, and D.  The results include several 
performance parameters averaged over multiple neuron trials for 
combinations of the variables R, G, H, and w that were independently 
optimized for each row of the table.  The table entries are grouped by their 
values of D and C, and in declining order of bits/neuron, which ranges 
between 1623 and 23.  For the best listed cases the parameter bits/synapse  
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Table 3.2.  Maximized values of L (bits/neuron) as a function of the CE 
model parameters 

 
 C  D  So L H  R  G pF (%) pL w SG/So 

 10 4 10,000 1632 5 125 1.8 0.79 0.24 2000 0.26 
 1 4 10,000 1052 5 384 3.8 1.2 0.58 400 0.15 
 4 4 10,000 893 5 178 3.2 0.2 0.36 500 0.16 
 10 1 10,000 812 5 333 3.8 2.6 0.88 200 0.24 
 4 1 10,000 808 10 357 3.6 0.65 0.53 300 0.36 
 1 1 10,000 713 30 303 4.0 1.2 0.72 200 0.48 
 1 1 1000 157 5 285 4.0 2.0 0.28 200 0.36 
 4 4 1000 148 5 25 1.9 1.7 0.25 200 0.26 
 1 4 1000 146 5 83 1.9 1.4 0.14 500 0.35 
 4 1 1000 130 5 83 3.8 2.7 0.57 60 0.29 
 10 4 1000 121 5 10 1.8 2.5 0.48 70 0.18 
 1 1 200 33 5 57 3.8 2.4* 0.29 40 0.36 
 1 4 200 28 5 16 1.8 1.8* 0.15 80 0.31 
 4 1 200 23 5 16 3.8 4.5* 0.61 10 0.26 
 4 4 200 23 5 5 1.9 3.7* 0.23 40 0.24 

* pF rms > 0.5 pF 

    
ranges between 0.07 and 0.16 for So = 10,000 synapses, between 0.12 and 
0.16 for So = 1000 synapses, and between 0.06 and 0.16 for So = 200 
synapses.  In each case where D = 4, we assumed D’ = 7 so as to ensure 
Deff ! D and that D would not increase unduly after signals propagate 
through several  neural layers. 

 Each trial was optimized by automatic searching of all given 
combinations of input parameters where R was any integer up to 400, G 
was between 1 and 2 spaced at 0.1 and between 2 and 4 spaced at 0.2, H 
was between 5 and 250 spaced at 5, and w was spaced at 10 for values 
between 10 and 100, spaced at 100 for values up to 1000, and spaced at 
1000 for values up to 10,000.  The resulting false alarm and learning 
probabilities pF and pL are also listed, along with the number w of patterns 
presented during learning readiness and the fraction SG/So of strong 
synapses that result after learning is optimized and ceases. 
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 The main result of Table 3.2 is that the CE model, despite its 
simplicity concerning neuron function (adequately characterized by H, R, 
D, and C) and the simplicity of information extraction (spikes signify only 
that the current excitation pattern was probably seen during learning 
readiness), nonetheless the recoverable Shannon information stored per 
synapse, L/So bits/synapse, exceeds 0.1 for most neuron configurations that 
are consistent with fast learning and recall.  As noted earlier this 
performance is competitive with that predicted for other models employing 
quite different assumptions despite the simplicity of the cognon models. 

 The table also suggests why evolution might favor utilization of 
compartments (C > 1) and diversity in intra-pattern delay (D > 1); they 
allow the product R!H to assume much lower values for the largest 
neurons, large neurons being able to recall more patterns of greater 
complexity.  The product R!H is important because the random firing of 
~So/RCD inputs for each pattern summation should not exceed H, which 
would produce a false alarm.  That is, we want So > HRCD, which it is for 
every entry in Table 3.2 except the second line.  For most lines HRCD ! 
1.5 So.  The formula So/RCD arises because of the So potential inputs to a 
summation, only So/RCD are likely to be summed for a single pattern 
within one of C compartments and one of D time slots. 

 The exception on the second line is probably due to the fact that Deff 
! 6, not 4, so using Deff instead of D in the formula, which is more 
appropriate, eliminates the exception.  In fact, Deff ! 6 for most table entries 
with D = 4.  If there were no increase in delay dispersion so that Deff ! D, 
then L would be reduced slightly. 

 Reducing R (average number of excitation patterns received per 
spike produced) is biologically important because it controls the response 
speed of a neural network, which has survival value.  For example, if R 
exceeds 30 for patterns arriving at a gamma wave frequency of 30 Hz, then 
the average input neuron would spike less than once per second, which 
could slow animal response times. 

 The alternative evolutionary solution of increasing H may become 
metabolically expensive if the total cost of synapses on a neuron exceeds 
the metabolic cost of the cell body, as suggested later in the discussion of 
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the Table 3.5 results.  That is, evolution of compartments and differential 
spike timing within patterns could be motivated by the computational 
rewards of using neurons with more synapses while retaining swift 
reactions and limiting metabolic costs. 

 The table also suggests that the fraction SG/So of strong synapses 
varies between 0.1 and 0.6, depending on C, D, and other parameters.  If 
synapse strength distributions can be measured and related to these 
parameters, this would provide another way to validate cognon models as 
potential guides to neural behavior. 

 Finally, Table 3.2 suggests that G should be between 1.6 and 4, with 
3.8-4 being preferred for maximum values of L; the cases where G > 4 
were not examined.  However, as shown earlier in Tables 2.1, 2.3, and 2.4, 
and soon by Table 3.4, lower values of G also work well. 

 The potential benefits of C > 1, D > 1 can also be evaluated under 
the constraining assumption of homology in both parameters.  Homology 
in R was explained earlier; it simply requires that the average firing rate of 
a neuron during learning (pL during learning) or recall (1/R) approximate 
the average firing rate (1/R) of its input neurons, i..e., pL!R ! 1.  Partial 
homology requires that this product merely be reasonably bounded.  For 
example, the simulations in Table 3.2 examined several cases where 1 < 
pL!R < 10 that generally store more information than when pL!R ! 1. 

 Homology in D requires that the time span of a slightly time-
dispersed pattern remains approximately constant as the pattern propagates 
from layer to layer.  That is, the number D of resolvable time slots 
occupied by spikes belonging to a particular pattern should not 
systematically increase layer to layer, or presumably beyond the bounds set 
by inter-pattern separations, say 25 milliseconds for gamma waves.  D 
would therefore probably be limited to values below 8, say, if the time 
resolution of spike synchrony were roughly 2 milliseconds.  Slower waves 
or asynchronous single “overspread” patterns spanning more than one EEG 
period might permit larger values.  Whether overspread patterns with 
excessive D values could be processed correctly is unknown; this issue is 
not explored here. 
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 Since the probability distribution of the output neuron model spike 
emissions represents the convolution of the delay distribution of the input 
excitory spikes from the preceding layer, and the additional delays 
introduced in the axon/synapse/dendrite propagation path prior to 
summation, one might suspect that the output delay distribution would 
spread layer to layer uncontrollably.  However, that does not generally 
happen because statistically those spikes that arrive for summation early or 
late are relatively rare and typically cannot sum to meet the threshold; the 
central time slots are heavily favored, as explained later in this section.  
The metric used to characterize the width of the output spike distribution, 
Deff, was arbitrarily chosen as the width of a uniform boxcar delay 
distribution that has the same entropy as the output spike delay distribution 
from the model neuron.  Deff = 1 if D = 1. 

 The net effect of adding multiple dendrite compartments and inter-
pattern delays, C and D, to the CB model is significant because the number 
of patterns that it can then learn for given values of R and H increases 
markedly.  We find for SA learning models limited by homology in R and 
D that the optimum numbers of synapses So that result from arguably 
plausible values of C, D, R, and H can then exceed 10,000 or more, as 
observed in nature.  One might therefore preferentially seek such 
compartmented and delay-sensitive behavior in cortical neurons known to 
have many synapses and significant memory duties. 

 One reason the number of patterns recognized by a single model 
neuron increases as C and D increase is that the patterns tested against the 
threshold H become increasingly sparse and therefore orthogonal because 
patterns then have a lower fraction of spikes (1’s), and the patterns can 
increase in length.  The average number of time-synchronous spikes per 
pattern or dendrite compartment remains in the neighborhood of H, 
however.  These consequences are apparent in the simulation results. 

 To compare the performance of SS and SA learning we simulated in 
the time domain neural models characterized by a wide range of given 
values of H, R, D, and C.  Each excitation pattern was characterized by 
which synapses i were excited and at which afferent soma delays Di.  For 
each output model neuron Di was independently and identically distributed 
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(IID) over D possibilities.  The probability that a given afferent output 
soma was excited during any particular pattern was R-1. 

 L was maximized for each modeled combination of H, R, D, and C, 
first by choosing So and D’ to ensure that the mean output firing rate R and 
delay spread D were comparable to those at the neural inputs.  Otherwise R 
and D would increase rapidly across successive neural layers (L increases 
with R and D).  Then the values of w and G that maximize L were found; 
these steps were manually iterated for the results presented below. 

 The delay spread D' within a neural unit arises from some 
combination of axon propagation and synapse/dendrite response times, 
which could be ~20 msec (Gollisch & Meister, 2008; Rall, 1977; Branco, 
Clark, & Hausser, 2010), consistent with the range of spike delays 
observed following a flashed retinal image.  The resulting values for L and 
other parameters for eight diverse optimized SA and SS neural models are 
listed in Table 3.3A and 3.3B, respectively; abbreviations are defined in 
Table 3.1.  The second through seventh synapse strength (SS) parameter 
sets were also tested for synapse atrophy (SA), permitting comparisons. 

 Several conclusions can be drawn from Table 3.3.  First, synapse 
atrophy (SA) learning permits storage of roughly 2-7 times as much 
information L per neuron as does synapse-strength (SS) learning for these 
examples, and roughly 1.5-5 times as much information storage per 
stronger synapse,  L/Sm.  For example, LSA/LSS ! 2 for the [D,C,H,R] = [1, 
10, 10, 30] case, and LSA/LSS ! 7 for the [4, 1, 30, 30] case.  Also it is clear 
that neither delay diversity (D > 1) nor compartments (C > 1) are necessary 
for useful performance, although they do permit lower values of R for high 
performance using fixed values of So.  Lower values
of R correspond to more frequent spiking and therefore greater data rates.  
For this diverse set of models the bits per synapse (L/Sm) range 0.02-0.3, 
roughly consistent with typical prior estimates (Baldassi et al., 2007; 
Barrett & van Rossum, 2008). 

 Second, the performance of SS models is not heavily dependent on 
the ratio G, as illustrated for the [1, 1, 30, 30] case where the maximum L 
varies less than a factor of two as G varies from 1.2 to 2.0.  For the 
remaining SS cases only the results for the approximately optimum G are 
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shown.  These optimum G values are generally higher for the simpler 
neural models, which yield lower values of L.  This may result partly 
because the relative standard deviations in the excitation sums are higher in 
simpler models where fewer random events are added, and higher values of 
G can better accommodate this increased variation. 

Table 3.3.   Illustrative time-domain simulation results comparing the SS 
and SA CE models when L (bits/neuron) is manually maximized subject to 
homology in spike frequency (pLR ! 1) and spike time dispersion (D ! Deff). 

 
  Model parameters                        Average results   

 D C H R G L L/Sm  30L/W Sm WpL  pF L/WpL So W D’
      b/n* mb/syn  b/s/n #/n #/n % b/w #/n w/n # 

 A.  SA Learning  
 1 1 10 10 - 11.6 360 8.7 32.2 4.1 0.34 2.8 64 40 1 
 1 1 30 30 - 47.8 100 1.55 489 31 0.22 1.54 626 925 1 
 1 10 10 10 - 34.8 250 5.96 139 19 1.01 1.8 421 175 1 
 1 10 10 30 - 102 220 1.61 454 62 0.17 1.6 1056 1900 1 
 1 10 30 30 - 257 100 1.93 2633 130 0.06 2.0 5184 4000 1 
 4 1 30 30 - 307 120 1.94 2627 161 0.10 1.9 3888 4750 7 
 4 1 100 30 - 529 40 1.72 13019 311 0.16 1.7 16344 9200 7 
 8 4 20 20 - 1232 200 3.70 6164 513 0.12 2.4 10542 10000 14 

 B.  SS Learning    
 1 1 30 30 1.2 6.6 44 1.3 152 5.1 0.34 1.31 654 150 1 
 1 1 30 30 1.6 7.5 43 2.2 172 3.3 0.01 2.24 621 100 1 
 1 1 30 30 2.0 5.1 19 1.5 275 3.2 0.18 1.59 626 100 1 
 1 10 10 10 1.6 6.8 50 5.1 119 4.0 1.10 1.70 520 40 1 
 1 10 10 30 1.3 52 146 1.4 359 37 0.28 1.42 1086 1100 1 
 1 10 30 30 1.2 74 45 1.9 1625 48 0.23 1.54 5238 1400 1 
 4 1 30 30 1.2 44 29 1.0 1522 43 0.50 1.01 3888 1300 7 
 4 10 30 30 1.2 424 39 1.4 11012 296 0.25 1.43 33030 9000 7 
  
 * Abbreviations:  b = bits, mb = millibits, n = neuron, syn = synapse, s = second,  
   w = pattern, # = number 
 

 Third, the optimum numbers of naïve (So) and mature (Sm) synapses 
can exceed 10,000 for larger neural models (e.g., [SA: 4,1,100,30] and [SS: 
4,10,30,30], consistent with neurological observations despite their tenuous 
link with these simple models (Koch, 1999).  To the extent these models 
suggest real neural behavior, the implication is that neurons with tens of 
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thousands of synapses may employ effectively compartmented and more 
heavily branched dendrites, or may discriminate between excitation 
patterns for which D > 1. 

 Fourth, it appears from the approximate upper bound 30L/W 
(bits/sec) listed in the table that information can be extracted fairly rapidly 
at rates differing less than a factor of two between comparable SA and SS 
model neurons; this estimate assumes an average pattern presentation rate 
of 30 Hz.   This rough bound equals the bits per pattern learned (L/WpL) 
times the rate at which learned patterns might be presented.  If we assume a 
test excitation-pattern ensemble similar to that applied when the model was 
learning, then if 30 such patterns were presented per second, of these 
patterns only 30/R would have been learned.  Since pLR ! 1 if the input and 
output spiking rates R are to be comparable, the upper bound becomes 
30L/W bits/sec.  By comparing this rate bound to L it appears these models 
can plausibly release most of their information content within the time 
W/30, or within seconds to minutes, depending on their information 
content and the set of excitations patterns used to extract it. 

 Rapid extraction requires that only the most environmentally 
relevant patterns sensed by a particular neuron are presented, not noise.  
The table also suggests that hundreds of patterns (W·pL) can be learned by 
each SA neuron, several times more than by SS neurons having similar 
parameters, and that the bits per pattern learned (or per spike) L/WpL range 
between 1 and 3 for all models, similar to prior suggestions, (e.g., Rieke et 
al., 1996). 

 Fifth, for optimum recall performance the spontaneous false-alarm 
rates (pF) per pattern are on the order of 0.1-1 percent, corresponding to a 
false alarm every few seconds if we again assume a 30-Hz pattern 
presentation rate.  This implies that neural malfunctions promoting random 
firing at rates higher than this are likely to degrade performance.  It also 
suggests the possibility that most observed spikes may be important and 
that observed correlations over ensembles are probably missing most of the 
underlying information being communicated; this is particularly true if 
only a fraction of each neuron’s inputs are monitored.  
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 Sixth, if there is delay dispersion within patterns (D > 1), then the 
modeled delay dispersion D’ within neurons exceeds D by nearly a factor 
of two for all models, assuming the delay dispersion remains roughly 
constant from one neural layer to the next.  This non-obvious result may be 
explained by the fact that if both the spike and neural delay distributions 
were equal-length uniform boxcars, then the total delay distribution would 
be their convolution, or a triangle that would strongly favor spike 
generation near the triangle’s peak, thus significantly diminishing D at the 
neural output.  Nominal equality of D at both input and output therefore 
generally requires that D’ > D if D > 1. 

 For boxcar spike arrival distributions we found D’ ! 2D – 1 using 
simulations, which is consistent with the convolution of two boxcar widths 
(D and D’) to yield a trapezoid with a maximum length at the top near D.  
Since only afferent neurons that produce net delays near the top of the 
probability trapezoid are likely to be incorporated in patterns that are 
learned, the effective R for afferent neurons contributing to the ramps of 
the trapezoid is therefore increased to R’ ! R(2D-1)/D.  More realistic 
delay distributions for excitation spikes would round the corners of the 
theoretical trapezoid, further lowering the success probability of spikes and 
therefore their energy efficiency, measured as Joules per bit or spike; thus 
the simulations in Table 3.2 are slightly optimistic for this reason. 

 Finally, these results suggest that a hybrid learning strategy that 
combines the high-L benefits of the SA model with the learning flexibility 
of the SS model may be superior to SA or SS learning alone.  For example, 
most neurons might frequently shift between their learning and recall 
modes using SS learning until w approaches values where L peaks, and 
then some of the older, less utilized synapses might atrophy so that new 
synapses with strength si = 1 could be added and trained.  This process 
could continually iterate as the neuron slowly grows larger over its 
lifespan.  Although it is well known that less useful synapses atrophy and 
that firing thresholds vary, the relationship between such behavior and 
recall skill has not been well measured in nature (Koch, 1999). 

 Each experiment averaged the performance of at least 10 neurons, 
each of which was tested on roughly 100,000 randomly chosen excitation 
patterns.  Small variations in the results occur because: 1) of finite 
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averaging, 2) D, D’, and H are integers, and 3) these optimizations 
employed manual multi-dimensional hill-climbing; these three error 
sources appear to be roughly comparable. 

 The values of C, D, D', H, and R, used in these simulations are 
arguably consistent with nature.  The number of C independent dendrite 
compartments is likely to be unity or related to the number of major 
dendrite branches closely coupled to the soma, perhaps no more than 15, 
depending on neural type.  The delay spread  D'  within a neural unit arises 
from some combination of axon propagation and synapse/dendrite 
response times, which could be ~20 msec, consistent with observed 
relation times and the range of spike delays observed following a flashed 
retinal image (Gollisch & Meister, 2008; Rall, 1977; Branco, Clark, & 
Hausser, 2010).  A rough upper limit to D' is therefore perhaps (20 
msec)/(2 msec) = 10, assuming spike widths and coincidences of ~2 msec.  
If homology applies and D’ ! 2D – 1, then D might lie between unity and 
6. 

 As noted earlier, the threshold H probably lies between ~60, a 
nominal ratio of threshold-to-single-spike voltages, and ~9, a nominal ratio 
of threshold-to-single-spike currents.  Since these threshold-to-single-spike 
ratios may be misleading if post-synaptic effects superimpose non-linearly, 
as some evidence suggests (London & Hausser, 2005; Rall, 1977), we 
explore H values as low as 5, where low values often yield the highest 
values for bits/synapse.  We can infer that R lies roughly between 4 and 40 
if the period T between spike waves (patterns presented) approximates that 
for gamma waves, say 25 msec, and the observed intervals between 
consecutive spikes for attentive animals are ~100-1000 msec. 

 Table 3.4 presents a lengthier set of results for the synapse atrophy 
(SA) model where So and w were manually optimized to maximize the 
information stored per neuron (L bits) for the given model parameters D, 
C, H, and R while satisfying homology for R and D.  Hereafter “word” is 
often used interchangeably with “pattern.”  Listed parameters of interest 
also include averages of the: 1) bits stored per mature synapse L/Sm, 2) 
bits/second, !L/W, that a neuron could communicate when the spike-wave 
pattern frequency $ = 30 Hz, 3) optimum number of mature synapses Sm, 4) 
maximum number of words learned WpL, 5) false-alarm probability pF for 
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an optimized mature neuron, 6) bits stored per word learned L/WpL, 7) 
optimum number So of naïve synapses, 8) optimum number W of words 
taught, 9) delay spread D’ introduced by the afferent axon/synapse/dendrite 
system, 10) entropy Deff of the output delay spread, which equals D under 
homology, and 11) metric pLR for achievement of homology in spike 
frequency; pLR should approximate unity.  Boldface entries are maxima or 
minima for that column. 

Table 3.4.  Time-domain simulation results for the synapse atrophy 
learning model (SA) constrained by homology 

 
Model parameters                          Average results  

D C H R   L L/Sm 30L/W  Sm WpL pF L/WpL  So  W D’ Deff RpL 

    b/n*  b/syn  b/s/n #/n #/n %  b/w #/n w/n  #  #  - 

1 1 10 10 12 0.36 8.7 32.2 4.1 0.34 2.8 64 40 1 1 1.04 
1 1 10 30 22 0.25 1.9 87.5 12 0.13 1.8 153 350 1 1 1.04 
1 1 30 10 24 0.16 10 148 7.3 0.17 3.3 236 70 1 1 1.05 
1 1 30 30 48 0.10 1.6 489 31 0.22 1.5 626 925 1 1 1.00 
1 4 5 20 17 0.46 2.9 37.2 9.1 0.30 1.9 111 180 1 1 1.01 
1 4 20 5 14 0.12 11 114 8.1 2.48 1.7 270 40 1 1 1.01 
1 10 10 10 35 0.25 6.0 139 19 1.01 1.8 421 175 1 1 1.06 
1 10 10 30 102 0.22 1.6 454 62 0.17 1.6 1056 1900 1 1 0.98 
1 10 30 10 82 0.10 6.6 784 39 0.74 2.1 1890 375 1 1 1.05 
1 10 30 30 257 0.10 1.9 2633 130 0.06 2.0 5184 4000 1 1 0.98 
1 20 20 20 230 0.14 2.8 1697 124 0.30 1.8 3904 2500 1 1 0.99 
2 4 20 20 234 0.15 2.5 1587 137 0.36 1.7 2546 2800 3 2.0 0.98 
4 1 10 10 59 0.38 8.8 152 21 0.33 2.8 301 200 6 4.2 1.04 
4 1 10 30 111 0.25 1.7 443 68 0.20 1.6 749 2000 6 3.9 1.03 
4 1 30 10 149 0.17 9.4 890 50 0.28 3.0 1425 475 7 4.3 1.06 
4 1 30 30 307 0.12 1.9 2627 161 0.10 1.9 3888 4750 7 4.2 1.01 
4 1 100 10 267 0.06 9.4 4129 84 0.17 3.2 5710 850 7 4.0 0.99 
4 1 100 30 529 0.04 1.7 13019 311 0.16 1.7 16344 9200 7 4.0 1.01 
8 4 20 20 1232 0.20 3.7 6164 513 0.12 2.4 10542 10000 14 8.4 1.03 

 * Abbreviations:  b = bits, n = neuron, syn = synapse, s = second,  
   w = word (pattern), # = number 
 
 The SA simulator results in Table 3.4 were fitted to simple 
polynomials presented in Table 3.5 that predict performance parameters.  
The indicated rms accuracies in the table are the linearized equivalents of 
the rms discrepancies found in logarithmic space.  More elaborate 
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polynomials would fit the data better, but the rudimentary conclusions we 
seek would not seem to warrant the effort given the small number of 
simulations.   

Table 3.5  Polynomial approximations to optimized SA model-neuron 
parameters 

 
Parameter   Approximate polynomial             Simplified approximation                      

 L 0.23 D1.35 R0.86 C0.67 H0.72  ±24% 0.3 (D2RCH)0.7    
     (bits/neuron) 

 L/Sm 3.3 D0.11 R-0.2 C-0.08 H-0.81  ± 13% 3 R-0.2 H-0.8  
     (bits/mature synapse) 

 L/WpL 4.7 D0.05 R-0.3 C-0.06 H0.02  ± 16% 2      
     (bits/pattern learned; 

bits/spike) 
 Sm 0.34 D1.2 R0.87 C0.88 H1.35  ± 10%  0.3 (DH)1.3(RC)0.9 

     (naïve synapses/neuron) 

 Sm/So  0.20 D0.03 R0.19 C-0.13 H0.18 ± 9%  0.2(RH/C)1/6 ! 50% 
     (reinforcement prob.) 

 WpL 0.049 D1.29 R1.15 C0.73 H0.69  ± 19%  0.05 (DR)1.2 (CH)0.7 
     (patterns learned) 

 Sm/pLW 1.41 D-0.06 R-0.09 C0.02 H0.83 ± 5%  H0.8    
     (mature synapses/pattern 

learned) 
 pF 0.076 D-0.13 R-1.04 C0.14 H-0.18 ± 61% 0.07 R-1  
     (false alarm probability) 

 !L/W 5.4% D0.06 R-1.33 C-0.07 H0.01  ± 11% 5% R-1.3 
     (bits/neuron/second) 
 
 The first result of interest involves the ability of SA neurons and 
synapses to store bits and memorize patterns.  The first polynomial in 
Table 3.5 is an approximate upper bound to memory capacity L for an SA 
neuron.  The associated simplified expression for L (bits/neuron) is 
~0.3(D2RCH)0.7, which can be very roughly interpreted.  Its four factors 
can be viewed as semi-orthogonal dimensions of a space in which bits can 
be placed.  Recall that any SA compartment must have approximately R!H 
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synapses in order to fire with reasonable probability, corresponding to a 
maximum of 2RH possible messages and log2(2RH)  = R!H bits for one 
message if they are equiprobable. 

 This reasoning leads to an approximate upper bound to L of R!H bits 
in each of C compartments for each of D delays (yields ~RHCD bits).  
However, each synapse in each compartment can fire in ~D possible time 
slots, offering (RH)D combinations or Dlog2(RH) which adds to the RHCD 
bits.  A small increase in the D dependence therefore seems plausible, 
perhaps approximating D2RHC and the simulation results for L, which are 
evidently diminished by learning and recall inefficiencies to 
~0.3(D2RCH)0.7.  Although this derivation is rough it does provide some 
intuition. 

 The efficiency of such storage is also suggested by the memory 
capacity of mature SA synapses, L/Sm (bits/mature synapse), which 
approximates 3R-0.2H-0.8 for the assumed range of model neural parameters 
listed in Table 3.4.  Over this range, L/Sm varies between 0.04 and 0.46 
bits/mature-synapse and averages 0.19, which is consistent with prior 
estimates (Baldassi, Braunstein, Brunel, & Zecchina, 2007; Barrett & van 
Rossum, 2008).  Most such prior models assume that both 
learning/forgetting and synapse strength vary slowly over multiple learning 
events.  An early exception was the multi-neuron instant learning model 
for an associative memory inspired by holography (Willshaw, Buneman, & 
Longuet-Higgins, 1969) and discussed in Section 2.6. 

 Related questions involve the maximum numbers of bits conveyed 
per spike or stored within a typical synapse, and which factors determine 
the optimum value of H.  Table 3.5 provides the interesting result that each 
of the w!pL learned patterns yields L/wpL ! 2 bits.  If we extract this 
information efficiently by testing for all w learned patterns and all are 
recognized, then we might conclude each recognition spike conveyed two 
bits of information, consistent with prior estimates (Rieke, Warland, van 
Steveninck, & Bialek, 1996).  The metric bits/spike is proportional to the 
survival-relevant metric, bits/Joule, and therefore one of the parameters 
probably maximized by evolution. 
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 Since L/Sm ' H-0.8, which favors low values of H if synapses are 
metabolically expensive, and L ' H0.7, which favors large H if neural cell 
bodies are relatively more expensive, it follows that the optimum value of 
H is partly determined by the relative metabolic costs of neural cell bodies 
versus those of synapses.  In contrast, the other survival-relevant metrics of 
bits/spike and bits/neuron/second are nearly independent of H. 

 Another test for any neural model is its ability to explain why 
neurons have so many synapses.  Both the last two entries in Table 3.4 and 
the polynomials for So and Sm in Table 3.5 show that larger neural models 
can advantageously utilize more than 10,000 synapses, and perhaps even 
100,000.  Since neocortical pyramidal cells can have ~10,000 afferent 
synapses, and Purkinje cells in the cerebellum may have 200,000 (Koch, 
1999), in order for these cells to be both memory-optimum and consistent 
with these SA model results they probably employ more than one 
resolvable delay (D > 1) and the equivalent of multiple dendrite 
compartments (C > 1), assuming that biology limits the polynomial factor 
R0.8H1.3 < ~10,000. 

 It would therefore be interesting to compare estimated in vivo [D, R, 
C, H, So] combinations for different cell types with SA predictions of 
which combinations are more nearly optimum with respect to utility 
metrics such as L, L/Sm, !L/W, and total metabolic cost.  Similar 
comparisons with polynomials derived for the synapse strength (SS) model 
would also be interesting, although Table 3.2 suggests that the information 
storage L and other parameters would be somewhat lower than for the SA 
learning model. 

 The simulation-based polynomial for pF in Table 3.5 suggests that at 
maturity the optimum SA homologous false-alarm probability pF ! 0.07 pL 
(since R-1 = pL) and that it ranges from 0.06 to 2.5 percent for the cases 
listed in Table 3.4.  Thus such memory should remain functional when 
burdened by random firing at comparable levels (say ~0.1-0.4 spikes/sec), 
which is not very demanding.  The converse implication is also interesting; 
all non-random spikes may have very precise meanings, and small 
perturbations in their timing or propagation success may reduce 
performance significantly below the bounds estimated here.  Some of this 
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could be compensated by the fact that these neural models are far simpler 
than real neurons. 

 A metric other than memory that promotes organism survival is the 
rate (bits/sec/neuron) at which a neuron can transmit its information.  This 
rate roughly equals the average bits per spike L/WpL times the average 
number of spikes per second, %/R, where % is the nominal pattern frequency 
[Hz]; (L/WpL)(%/R) = !L/W.  Table 3.5 suggests that !L/W ! 5%/R1.3, which 
motivates small values of R rather than large values that maximize L, a 
competing survival metric.  Survival might therefore be optimized by 
intermediate values of R that serve both information rate and memory 
survival objectives reasonably well.  This also suggests that cortical 
regions with high average R may be more memory intensive, while those 
with low R values may be more time critical. 

 Although the variables RHCD have been regarded here as arbitrary 
inputs, they may have natural optima determined by cost functions that 
depend, for example, on survival objectives in the case of R and on the 
relative metabolic costs of synapses versus neurons in the case of H, as 
suggested earlier; other costs may also enter.  Large values for C imply 
large numbers of synapses with attendant metabolic costs and may also 
challenge the branching architecture of dendrite arbors.  Similarly the 
significant advantages of high D values are presumably balanced by 
biological limits to spike time resolution and timing stability, and by the 
desire for rapid cognitive responses that require high-frequency spike-wave 
patterns.  Therefore such organism optimization issues provide another 
avenue for testing the relevance of such extended neural models to real 
neurons and real organisms. 

 

3.4. Extended cognon time-domain simulator  

The simulator is written in C++ and operates in a Linux 
environment.  More detailed source code explanations, listings, and 
instructions for downloading the complete sources and data are provided in 
Appendix B. 
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The CB neuron learning simulator trains and tests an ensemble of 
neurons having given parameters and reports the average results for 
various parameters, particularly the mean and standard deviation for the 
probability of learning pL, probability of false alarms pF, and learned 
information metric L.  The simulator accumulates a wide variety of other 
statistics, such as the number of synapses strengthened during training, 
which are available through the programmatic interface. 

To collect sufficient and sufficiently accurate statistics for the 
probability of learning, the system trains enough neurons so that at least 
10,000 words are exposed to neurons during training in aggregate across 
the ensemble. For example, if each neuron were exposed to ten words 
during training, then the system would train 1000 neurons.  In any event, at 
least ten neurons are trained, no matter how many words are in the training 
set for each neuron. 

To collect sufficient statistics for the probability of false alarms, each 
neuron configuration is tested, over its ensemble, on a total of at least 
1,000,000 random words that do not belong to the training set.  The 
number of random words on which each neuron is tested depends on the 
number of neurons in the ensemble, but in any event no neuron is ever 
tested on fewer than 1000 random words.  For many variables the accuracy 
of the resulting average is represented by the standard deviations of the M 
samples relative to their mean, divided by M -1. 

In general the simulator may be given a neuron configuration, 
usually specified as some combination of C, D, D’, H, R, So, G, and w, and 
it reports the various statistics of interest for that specific configuration; 
these include the average values and standard deviations of L, pF, and pL, 
and other results such as So/L, Sm and L/w.  There are provisions in the 
system to report the data in a comma-separated-value (CSV) format 
suitable for input to a spreadsheet or other data processing system.  Within 
the simulator code and output data slightly different names are used for 
some variables: D # D1, D’ # D2, So  # S, w # W, and Q = So/(H(R(C).  
All inputs and outputs are displayed on an Excel spreadsheet, where each 
line represents the average of many single-neuron experiments. 
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The large number of configuration parameters means that a very 
large high-dimensional parameter space must be searched when seeking 
optimal performance.  To generate data for some tables, particularly Tables 
2.3 and 3.3, we developed a simple heuristic search algorithm that is given 
a partial configuration of H, S, C, D1, and D2, with parameters describing 
the grid search parameters for G, and that seeks local optimum 
performance by doing a grid search on W, Q, R, and G with early stopping.  
W was restricted to one of the values {10, 20, 30, ..., 90, 100, 200, 300, ..., 
900, 1000, 2000, ..., 10,000}.  Q was any number in the range {0.5, 2(D1}.  
R was an integer constrained to the range {2, ..., 400}.  G was constrained 
to be in the range from G_max down to one, quantized by G_step 
increments.    H_m was defined as H!G, although other untested choices 
might perform slightly better.  G_max, and G_step were chosen to be 
plausibly consistent with neurological parameters and vary from 
experiment to experiment. 

  The CB time-domain neuron simulator uses two key classes of 
variables: neurons and words.  Each neuron has So synapses, each of which 
has a strength value that is equal to either unity or G prior to being exposed 
to each new word vector.  Initially all synapses have strength one.  A word, 
which defines an excitation pattern, contains a list of those input synapses 
that fired for the most recent given excitation pattern, and a single neuron 
matrix corresponds to a chronological list of words, one per excitation 
pattern presented to that neuron. 

The two main routines are “train” and “expose.”  To train a neuron, 
“train” is called for each word to be recognized.  If the neuron fires for that 
word then all synapses that contributed to that firing have their strengths 
irreversibly increased to G.  Once training is complete the neuron's 
threshold value H is set to H·G by the external code, which also hosts the 
neuron model parameters R and w, where 1/R is defined as the fraction of 
the words for which each synapse independently fires, and w is the number 
of words to be exposed to the neuron during training. 

 The routine “expose” models how the neuron reacts to excitation 
patterns, and how it computes whether or not to fire.  This is embedded 
within an envelope that calls this code.  Expose computes the weighted 
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sum of the input word, and the neuron fires if that sum meets or exceeds a 
threshold.  The weighted sum is the sum of the So element-by-element 
products of the most recent neuron vector, and the current word.  The firing 
threshold is increased slightly by “epsilon” to avoid effects of rounding 
and representational errors in floating point arithmetic.  A more detailed 
description of the simulator is presented in Appendix B. 

 This CE model simulator accommodates the CB model by simply 
setting the input parameters C = D = 1.  The neuron simulator is written in 
C++, uses the standard template library (STL), and typically operates in a 
Linux environment.  For performance it may use OpenMP to compute 
various simulations in parallel.  The full simulator and its source code are 
available for download from http://cognon.net.  Suggestions for its use and 
a more complete description appear in Appendix B. 
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Chapter 4 

Relationship between the extended neuron 
learning models and neuroscience 
 

4.1 Summary of the key results of Chapters 2 and 3 

 It is useful to summarize the key results of the preceding chapters 
before linking them to neuroscience: 

1) Simulations have demonstrated that a simple threshold-firing
binary CB model can learn a new pattern in less than a second and 
subsequently fire in the same  time with certainty when re-exposed to any 
excitation pattern that it previously learned. 

2) A pattern is learned when those plastic synapses that contributed to 
an output spike are modestly strengthened while the neuron firing 
threshold was temporarily lowered from G!H to H and the neuron was 
therefore temporarily learning ready.  For convenience and plausibility 
both the fraction of input neurons that fire for a given pattern, and the 
fraction of patterns exposed to the neuron that are learned while it is 
learning ready, were fixed by most simulations to be 1/R, which ensures 
homology in firing rate although these two fractions can differ in real 
neurons and can vary with time. 

3)  A Shannon mutual information metric  = I( )L X,Y  (bits) was 

derived and evaluated for many illustrative CB neural models.  For certain 
special cases it suggested that more than 1000 bits of information could be 
stored on single neurons and more than 0.1 bits per synapse. 

4) These simulations also demonstrated that the CB false-alarm rate can 
be less than 1 percent for unlearned random patterns, provided that the 
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pattern space is sparsely occupied by those patterns that were learned.  
Moreover, many excitation patterns can be learned by a single neuron, 
particularly for larger values of the parameters H and R, as limited by the 
acceptable false alarm rate.  This CB model appears to be unique with 
respect to its combination of learning speed, memory capacity, and 
neurological plausibility relative to similar hypotheses. 

5) Simulations also showed that extensions of the CB neuron model for 
given values of H and R can learn even more patterns and store more 
information if they have C > 1 independently firing dendrite compartments 
and D > 1 resolvable time slots (that define spike coincidence) located 
within several milliseconds of its central single neuron excitation pattern, 
where excitation patterns might excite the neuron at intervals of (say) 25 
millisecond or more. 

6) Some parameters characterizing the optimum simulated neuron 
structure depend on the performance metrics being optimized.  For 
example, the synapse-atrophy (SA) simulations suggest in Table 3.4 that 
larger values of R are best for neurons with larger memories, whereas 
smaller values of R permit faster response times.  Also, higher values of H 
are more economically efficient when the metabolic cost ratio for neurons 
to synapses is relatively larger, and vice versa.  The importance of these 
rough results lies principally in their demonstration that such neuron 
models can suggest potentially testable relationships between neuron 
properties and their computational function. 

 

4.2 Initial training of multi-layer neural systems 

 From this point onward the monograph becomes increasingly 
speculative and should be read in that light.  The utility of this speculation, 
which builds on a plausible spike-based computational foundation, is that it 
may suggest useful new neural architectures, simulations, and physical 
experiments, even though real neurons are far more complex. 

 At birth most cortical connections are random, although the 
statistical characteristics of neural forms and connectivity are largely 
predetermined, as is evident in the similarity between neuron types within 
any species.  One classic problem is how the animal’s early interaction 
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with its environment might determine these early connections and their 
strengths, particularly since many neural layers are involved.  This 
question is linked with the more basic question of how cortex thinks. 

 We hypothesize that the principal initial function of cortex is to 
memorize the animal’s environment and its dynamics, where the 
environment includes sensory and motor information from the animal 
itself.  The object of memorization is to support superior predictions based 
on prior observations, and therefore more successful survival and 
reproduction.  The full question of cognizance is postponed. 

 If the principal initial cortical functions are memorization, 
recognition, and prediction, then the CB neuron model would seem to 
suffice as a fundamental computational unit since it can perform those 
functions alone and in networks.  Such a model might be trained 
sequentially, layer by layer.  The connections in the early layers might be 
determined mostly by genetics, and at the first appropriate higher layer 
environment-based learning would begin.  Since reasonably intelligent 
behavior is exhibited by social insects having tiny neural circuits coded 
mostly by genetics, little brain or DNA would seem necessary to survive 
early infancy in the early absence of full cortical performance.  Some small 
mammals and birds have also packed a surprising amount of innate 
intelligence, presumably heavily genetic, into very small volumes. 

 We have assumed that spike-based SS learning occurs only during 
learning readiness when the firing threshold G!H is effectively temporarily 
lowered relative to spike amplitudes, and synapses are plastic.  Since even 
bees sense when they are threatened or when they might want to remember 
the location of food, it is not unreasonable that higher animals could be 
pre-wired do the same using astrocytes or other cellular intermediaries to 
lower effective firing thresholds or, equivalently, increase synaptic 
strengths, and thereby temporarily enable learning within moderately large 
cortical sectors when such learning is relevant to survival. 

 Even a general rise in average spiking rate within the immediate 
neighborhood of a neuron could increase the probability of its firing 
because there would be more excited inputs, which is equivalent to 
lowering its threshold G!H.  Such increases in local firing rates, if 
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sustained, should be evident in increased local metabolic activity visible as 
small spots in functional MRI images. 

 One advantage of extended cognons is that they can store much more 
information per neuron, thus reducing the need for frugality when deciding 
when local learning readiness (memorization) should start and end. 

 Under these assumptions of sequential training a multilayer neural 
network in a newborn might be plastic in only its first layer until that layer 
had learned the most common neuron excitation features characterizing the 
infant’s environment at that layer.  For example, such low level visual 
system features might include lines, ellipses, or circles of various sizes and 
orientations that span small local areas.  Image-processing researchers 
often use lapped transform basis functions (Malvar & Staelin, 1989) or 
similar wavelet functions for compact image representations. 

 These simpler features or their antecedents could also be genetically 
prewired, in which case those layers requiring more training would follow 
the more genetically wired ones.  Once any layer’s basic features were 
learned, perhaps by averaging many learning experiences, they could 
become less plastic or learning ready (i.e., G!H might remain high) while 
the following neural layer learned excitation patterns formed by the output 
spikes from the first layer. 

 A key question for any neuron model is how it would behave in a 
layered architecture.  Fortunately the CB and CE models have hundreds or 
thousands of inputs and if a single such model can recognize tens or 
hundreds of unique pattern sets that represent some aspect (feature) of the 
animal’s environment, then each neuron in the next following naïve layer, 
when it is totally untrained and infantile, could combine such common 
features from each of hundreds or thousands of similar feature detectors so 
as to recognize tens or hundreds of super features.  By induction, this 
process can proceed to the top of the stack, many neural levels higher, from 
a local pixel-oriented sensory domain to a more object-oriented domain at 
the top. 

 But why not train all layers, or at least more than one, 
simultaneously?    Consider a deep stack being trained this way, with many 
layers being learning ready simultaneously.  Also suppose there is a 
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George Washington (GW) neuron near the top of the stack that fires 
whenever GW is in the visual field anywhere in any position, or is 
similarly triggered by audio or other cues.  When GW is first seen during 
learning readiness certain random neurons in that high layer would be 
randomly excited.  There is unlikely to be any systematic relation between 
GW being in the visual field and the excitation of any single object-
oriented neuron. 

 So how can we train each learning-ready layer one at a time 
successfully?  Success requires that the structure of the neural network can 
accommodate the complexity of those aspects of the environment that 
promote survival.  Animals that can survive if they see flies to eat, avoid 
predators, and then reproduce successfully need to compute only very 
simple visual features using very few layers.  Humans survive using more 
complex strategies, but this requires much more sophisticated prediction 
skills, more features, and more neural layers. 

 Nonetheless there are limits.  For example, we are oblivious to that 
which we do not see, excellent examples being numerous optical illusions 
and the well know inability of most viewers to see a gorilla walking 
through a group of people tossing balls if the viewer is distracted counting 
the tosses. 

 That is, our brains have evolved to represent our environment 
accurately, making compromises when necessary.  Another compromise is 
that different brains probably have different strengths because their various 
functional regions are generally of different sizes or have different favored 
connectivity patterns.  Not all regions can be large or strongly connected to 
all other regions.  Random responses and inefficient learning are therefore 
presumably minimized if the initial sequential-layer training occurs in an 
organized sensory environment representative of that to be experienced 
later, free from excessive randomness or complexity. 

 In that fashion an entire stack of layers might be trained sequentially 
in a very rudimentary way as the animal slowly learned to see.  Although 
the initial learned wiring would almost certainly be non-optimum due to 
the restricted environments seen by most infants, as the infant ages the 
synapse distribution and strengths could be slowly optimized through 
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synapse atrophy and addition of new synapses and neurons.  Later the 
possible role and training of feedback will be discussed.  This model also 
suggests the potential importance of the earliest infant environment 
controlled by parents, particularly if subsequent neural editing is difficult. 
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Chapter 5 

Spike computations, feedback, and 
cognition 
 

5.1 Training of feedback paths using spikes 

 It is well known that in many cortical areas there are more feedback 
synapses conveying information top-down from higher levels than there 
are synapses conveying information bottom-up from senses such as the 
visual system (Hawkins & Blakeslee, 2004).  Therefore it is important for 
any learning model to account for top-down feedback synapse training as 
well.  Figure 5.1 illustrates how the CB neuron model and its extensions 
might accommodate and rapidly train synapses handling such bi-
directional flows of information.  The afferent synapses for each neuron 
can be divided into the “A” bottom-up set that accepts spikes from lower 
sensory layers, and the “B” top-down set that accepts spikes from the 
outputs of that neural layer and any layer above.  Other than this A/B 
distinction, the only innovation needed to accommodate top-down training 
is definition of when and where learning readiness is applied. 

 One simple top-down training option for either an SS or SA neuron N 
is the following.  First, while all B synapses are inactive, synapse set A 
becomes learning ready and is trained as before, perhaps approaching its 
maximum number WA of trainable words.  Then set A either raises its firing 
threshold or lets some unused synapses atrophy, and plasticity moves to 
those set-B synapses excited by neurons in that same layer.  To avoid an 
undue increase in the firing rate as the set-B synapses are activated either: 
1) H is increased slightly, or 2) the less utilized A synapses atrophy, or 3) 
both might occur.  Plasticity for the B set could end intermittently for SS 
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Figure 5.1.  Two neural units (N) in a single layer of a dual-flow network 
having top-down feedback paths.  Set-A synapses are feed-forward and 
Set-B synapses convey feedback. 

 

neurons if learning and recognition alternate, or when the new maximum 
trainable number of words WB is reached.   

 Feedback spikes from the same layer can arrive for some patterns 
synchronously with the spike produced by synapse set A if neuron N 
responds later than does its neighbors.  Otherwise, that feedback would 
need to arrive one time-cycle T later to reinforce a repeated presentation of 
set A.  This would require the periods T of these time cycles to be stable 
within the time resolution for superposition, or perhaps ~1-2 msec if D > 1.  
A likely period T is that associated with gamma waves and attention, or 
roughly 25 msec (Steinmetz et al., 2000).  Any initial feedback within the 
same spike wave increases the likelihood that a neuron would respond to 
those patterns to which its neighbors responded, even if it had not learned 
it using only its own A set.  This is also true even if the feedback arrives 
one or more cycles later because most patterns that are fixed objects of 
attention would last many cycles (e.g., a mother’s face). 

 Once the A/B set for the first neural layer is trained, then plasticity 
can pass from the B set of the first neural layer to the A set of the second 
layer, and then to the second B set, perhaps followed by another round of 
plasticity for the B set in the first layer.  This training cycle (train A, not B; 

.! .!.! .!
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train B not A) could be repeated for the remaining layers, one layer at a 
time, as increasingly integrative holistic patterns and concepts form and are 
memorized at the higher levels.  Top-down feedback can originate from 
one or more levels above the one being trained, particularly if plasticity 
reappears from time to time at lower levels and if the spike-wave period T 
is sufficiently stable that such feedback remains synchronous despite being 
offset one or more periods.   

 Many variants of this A/B training algorithm are obviously possible.  
In nature these periods of plasticity, atrophy, and variations in H could 
overlap in time in a wide variety of ways.  For example, it seems likely that 
alternation between A and B training would be much less necessary in later 
stages of learning. Alternation could also be avoided or minimized if the B 
connections formed slowly after training had begun.  Also, H could remain 
roughly constant while one new A or B naïve synapse formed and the 
least-used synapse atrophied (approximating the SA mode).  It is 
reasonable to assume that nature has evolved a nearly optimum strategy 
using the full complexity of real neurons, and it is enough for these simple 
numerical models to demonstrate the plausibility of such strategies. 

 

5.2 Uses for strong spike-based feedback 

 Such top-down feedback can serve multiple purposes.  First, it is clear 
that if the top-down B feedback corresponds to a preceding spike-wave 
pattern one or more periods T earlier, then the combined A/B pattern 
corresponds to a pattern sequence.  In the case of visual cortex, such 
pattern sequences might principally correspond to small features moving in 
particular directions, changing size, or rotating.  For example, one neuron 
capable of learning 192 visual patterns might instead learn 24 patterns that 
are moving one spatial step per period T in any of 8 possible directions; 
such tasks might normally be distributed redundantly over multiple 
neurons because of the assumed stochastic nature of learning. 

 Such merged A/B patterns might also correspond to phoneme, 
musical, motor, or tactile sequences and might subsequently be further 
merged and lengthened in time via top-down feedback having even longer 
delays.  Sequential storage of memories could provide access to remote 
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memories if a key memory were elicited, followed by sequential access to 
the forgotten target memory. 

 Second, if the B set corresponds to approximately the same pattern 
that is stimulating the A set, then the learned A/B pattern will be more 
immune to noise than is A alone because H is greater than for A alone and 
the sets A and B are effectively averaged.  Since each B input corresponds 
to the output of a neuron that may have thousands of other inputs, 
substantial averaging and noise reduction can occur even if the B set is 
smaller than the A set. 

 Noise immunity also increases if the A set is partially predicted by the 
B set, which is based on earlier inputs.  When the excitations for the sets A 
and B are added and then subjected to a threshold test, an approximately 
multiplicative term AB is added to the sum, with consequences similar to 
those of widely used matched filters that improve signal detection in 
analog receivers.  A multiplicative term AB can arise if we approximate 
the thresholded sum A + B as (A + B)2 = A2 + B2 + 2AB, where the 
average values of A2 and B2 are approximately constant and can be 
subtracted by raising the firing threshold.  This effect could significantly 
enhance the interpretation of speech in noisy environments or of noisy 
images and night scenes. 

 Third, to the extent that the B set predicts the A set, the number of A 
synapses required to lift the excitation sum above H is reduced, and 
therefore the average number of synapses and bits required to store a given 
new pattern is reduced, analogous to predictive source encoders used in 
communications and memory systems.  This ability to compress slowly 
evolving environmental patterns effectively increases the utility of each 
synapse.  Determining quantitatively how the noise reduction, sequence 
detection, and predictive coding performance of dual-flow neural networks 
would depend on A, B, and the pattern universe remains an interesting long 
term problem. 

 A fourth use may be even more interesting with respect to cognition.  
An ideal content-addressable or associative memory transmits a stored 
message after being triggered by a tag or any subset of that message that is 
sufficiently complex to identify it uniquely.  Cortex with feedback can 
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perform that function if the predictive B feedback pattern is more detailed 
than the sensory pattern that triggers it (Hopfield, 1982; Zheng, Tang, & 
Zhang, 2010; Hawkins & Blakeslee, 2004).  In the CB and CE models 
presented here the recovered pattern is the collective set of B excitations 
across multiple neurons, which could also be made available to other 
neural centers. 

 Since in the presence of novel inputs the B sets cannot be excited by 
feedback until the A sets stimulate them, during a recognition task the 
neuron firing threshold G!H should slowly increase from pattern to pattern 
at ~25-millisecond intervals as the number of B excitations increases; this 
also permits multiple neural layers to participate despite their longer round-
trip delays.  For example, if 12 pattern exposures were required for G!H to 
fully escalate, then content-addressed patterns would require perhaps 
12)25 = 300 msec to emerge, consistent with observations of 
approximately how long it takes people to identify the contents of an 
unexpectedly presented new visual scene (Thorpe, Fize, & Marlot, 1996). 

 In some cases a single stimulating sub-pattern might potentially 
correspond to two different full patterns, in which case only one can “win.”  
That is, the feedback can readily confirm only one or the other 
interpretation at one time.  If the winning full pattern employs synapses 
that slowly exhaust their biochemical resources, then the alternate pattern 
may suddenly win instead, and this alternation could continue for multiple 
cycles, consistent with multistable perception and the well-known three-
dimensional Necker cube illusion.  It would interesting to know if the 
frequency of oscillation in illusions similar to the Necker cube is correlated 
with the replacement rates of exhaustible biochemical resources.  For 
example, are oscillations faster in older or other subjects who tire sooner 
when thinking? 

 

5.3 Cognition with spikes 

 The seat and nature of cognition have been historically elusive and 
controversial, and this monograph can do little more than to speculate how 
a spike-based learning and recognition system might support or refine 
hypotheses discussed by others (Hawkins & Blakeslee, 2004; Koch, 2004). 
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 Consider, for example, how we might be able to perceive a perfectly 
straight line using only model neurons that spike when perhaps ten input 
spikes arrive at the same time.  Suppose that at lower levels of the visual 
system we have neurons Q1 that spike when pixels (picture elements) in 
their small local region are excited.  Suppose a neuron Q2 in the next layer 
then learns to spike when four or five such Q1 well-separated neurons 
lying in approximately the same straight line are excited.  Because the 
sensitivity regions for each Q1 are blurry circles, each Q2 responds to 
independent jagged straight lines.  However, if multiple Q2’s then 
stimulate a Q3 neuron in the following layer, that Q3 neuron will respond 
to a less jagged average of these Q2 jagged straight lines. 

 Although additional neural layers and averaging can result in 
responses that are increasingly indicative of perfectly straight lines, fewer 
layers would be required if the upper perception is of a perfectly straight 
line which is approximated by spike patterns propagating downward 
toward the sensory layers.  If the upward and downward pattern streams 
agree then the perceived straight line is validated. 

 If the sensed straight line moves, then validation would fail and the 
error signals fed upward would cause the perceived line to move 
correspondingly.  Whether this is how straight lines are in fact perceived 
would be difficult to determine, and many coding schemes are possible and 
may even be used in parallel.  Another scheme involves averaging local 
pixel positions first rather than averaging jagged lines.  The point is that 
spike patterns can plausibly support perception of straight lines or any 
other visual, auditory, olfactory, tactile, emotional, or other sensation. 

 We next ask what it means to perceive something.  For example, one 
can see, feel, taste, hold, and smell an apple all at the same time one is 
sensing the associated kitchen, companions, mood, weather, motor system 
state, etc.   These are sensed jointly, not in isolation, although we may 
choose to focus on taste or companions alone.  Thus the meaning of 
“apple” can extend beyond the object itself.  These associated memories in 
different cortical regions presumably help trigger each other through the 
inter-regional communications connections provided by white matter so as 
to produce an integrated perception. 



!

!

! ! ! ! ! +&!

 But what is it that we sense?  Is it the processed upward-moving 
signals from our various internal and external sensory systems, the 
downward-moving signals, or something else?  Since the visual signals 
propagating downward sometimes out-number those propagating upward 
by perhaps ten to one, it is reasonable to assume that the representational 
accuracy propagating downward toward the senses is of better quality, and 
that the upward signals merely ensure that the internal cognitive view of 
the world is consistent.  For example, the optical signals arriving at the 
retina are distorted on the sidewalls of the retina, exhibit diffraction 
fringes, and illuminate blind spots, but nonetheless do not usually degrade 
the internal visual view of the world.  Furthermore, our three-dimensional 
“hyper-vision” view of the world has no counterpart in the raw senses and 
clearly was constructed at the higher neural levels.   

 We could take the liberty of calling our conscious view of the world a 
hallucination because it is a fabricated representation that differs from our 
sensed signals in important ways, but fortunately it is often better than that 
imperfectly sensed reality.  Relative to our imperfect senses it is a 
synthesized “super-reality.”  Our resulting perception of the world and our 
consciousness are therefore constructed principally in cortex in association 
with other brain elements and are healthy so long as they agree well with 
the external world. 

 Thus, healthy cortex must continually compare its upward and 
downward flowing information and detect inconsistencies at each level that 
can be fed upward as an error pattern permitting perceptual corrections; for 
example, a viewed object may have moved slightly.  Persistent mismatches 
between internal and external reality in one or more senses are generally 
diagnosed as hallucinations indicative of schizophrenia. 

 Figure 5.2 illustrates how the apparently uni-directional neural 
network of Figure 5.1 is topologically equivalent to a symmetric network 
for which the upward and downward information flows can be the same if 
enough axons and/or dendrites extend both upward and downward.  Note 
that even though all neurons point upward, the numbers of pure “up” and 
“down” paths can be equal, as suggested by the two dashed flow lines.  In 
nature many neurons are effectively fully inverted, with more axons  
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Figure 5.2.  Symmetric dual-flow network having equal numbers of “up” 
and “down” paths, indicated by dashed lines, and possibly equal numbers 
of A (feed-forward) and B (feedback) synapses per neuron. 

 

emerging below than above, and this geometry is simpler than the one 
suggested in the figure. 

 For true symmetry the numbers of A and B synapses are equal, and 
the result is a symmetric “dual-flow” neural network.  Any degree of 
asymmetry can be accommodated by changing the synapse ratio of A to B.  
One point of this observation is that the CB spike-processing learning and 
recall models discussed above in the context feedback networks apply 
equally well when many neurons face backwards because the two 
situations are topologically equivalent. 

 Figure 5.3 suggests schematically how a dual-flow cortex might be 
stabilized so both flows are “locked” together.  Locking implies that the 
“up” information for each pattern (say 25-ms separations) is accurately 
predicted by the “down” information so that relatively few error bits 
(represented by spikes, one per pattern per neuron detecting an error) 
suffice to correct the subsequent prediction.  Almost certainly such locking 
must occur between every important pair of neural levels because each 
spike and correction conveys no more than one bit per pattern comparison  

“up” “down” 
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Figure 5.3.  Schematic of local feedback stabilization in a multi-level 
neural network. 

 

per neuron (for the best case, half of all pattern changes cause a given 
neuron to spike). 

 One interesting consequence of feedback and dual-flow locking is that 
if inter-pattern time separations (T’s) differ sufficiently, then further 
distinctions between patterns and pattern types could be achieved within 
single neurons.  Adding such frequency-domain multiplexing to 
population-delay coding could be particularly useful for boosting the 
communications and addressing capabilities of white matter. 

 Without closed-loop control of the internal cognition system the brain 
is forced to synthesize an internal reality that can range from amusing to 
highly dangerous.  For example, drugs and other extreme conditions can 
disrupt control and produce hallucinations.   But how do spike-based 
cognon models support this view of cognition?  We have shown that even 
the simple CB neuron model can learn to recognize patterns, and have 
discussed how neurons approximately arranged in layers could plausibly 
do the same over large fields of visual or other data at any of many 
hierarchical cortical levels. 

 The next question is how spike processing might compare two 
patterns and provide useful information about their differences that can be 
fed upward in order to correct perception at higher neural levels.  Although 

Upward information   Feedback flow 

Four illustrative 
neural layers 

Locally 
stabilizing 

feedback  
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how this occurs is unclear, one possibility is that subtraction is effectively 
achieved simply because the forward and backward A and B patterns 
superimpose to meet the firing threshold only if they agree.  If they don’t 
agree and therefore fail to meet the firing threshold, then that neuron won’t 
fire, which could inform the higher levels of a defect without specifying 
what it is beyond the identity of that particular neuron with its unique AB 
ensemble of connections. 

 Since multiple closely neighboring neurons probably perform similar 
computations for the same local image, and their pattern sensitivities are 
different, then it is plausible that the ensemble of “difference” signals from 
a full set of neighbors could collectively provide the necessary corrective 
information.  This information could be interpreted based on which 
neurons perceived an error and therefore failed to fire for that period T.  
The high-level neurons would then change state to eliminate the errors and 
update the perception.  Local motion compensation alone should correct 
most errors. 

 The bit rate per neuron for corrective information sent upward can be 
crudely estimated by noting that addition of A and B excitations to meet a 
threshold would produce a spike most of the time if reality remained 
constant and there were no errors.  When a particular correction is needed 
the spike might not appear, which corresponds to less than one bit if D = 1, 
and very slightly more otherwise because the time of appearance might be 
within any one of D possible time slots.  Since many neighboring neurons 
are probably performing very similar comparisons, the error detection 
process can be both robust and more information rich than if a single 
neuron carried the full error-detection burden. 

 Under this model if an object remained unchanged for too long, all 
neurons detecting no error would spike at period T and thus quickly 
exhaust certain neurotransmitter resources in the active neurons.  One 
result after resource exhaustion could be failure to spike, suggesting 
continual errors over any affected object and causing the brain to infer 
visual failure and ”paper over” that object with the locally surrounding 
visual field, much as it does with other blind spots.  Thus staring at objects 
should cause them to fade under both this model and others.  Since 
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saccades guarantee rapid scene changes, they could reduce this problem 
posed by viewed stationary objects. 

 If there is a second interpretation of the same visual field involving 
different neurons then, if the primary neurons exhaust their resources, that 
alternate interpretation might temporarily take precedence, as suggested 
earlier for the Necker cube illusion.  Note that this interpretation would not 
produce the Necker cube illusion if the feedback comparison involved B 
synapses that were inhibitory rather than excitatory because in that case 
agreement between up and down signals produces no spikes, and would 
not do so if the sum were further impaired by neurotransmitter exhaustion. 

 Thus, cognition may best be understood as the internal fantasy world 
of the mind that integrates all internal and external sensory data to model, 
predict, and control mind and body.  This modeling ability can also 
partially extend to the minds and bodies of others.  Evidence suggests, for 
example, that some people can accurately mimic in their minds the motor 
control commands that correspond to those utilized by others they watch, 
such as sports heroes or ballerinas, and thus learn the same moves by 
intellectual imitation.  

 The same neural mimicry seems to be true for the emotions of people 
highly sensitive to others, or for those who truly feel the pain of others.  
These traits vary widely from person to person, however.  Each person 
therefore presumably experiences cognition in slightly different ways, 
depending on which brain sectors are most talented and developed.  For 
example, verbal and spatial skills vary widely from person to person, as do 
memory, analytical skills, coordination, emotional control, etc.  “Super-
vision” may also differ but cannot be readily measured.  The degree to 
which these differences are genetic, developmental, or educational is not 
well known, but it is clear that all three can sometimes play dominant 
roles, particularly when establishing upper bounds on performance. 

 

5.4  Inter-regional training and communication via white matter 

 The nature of synapse training is different during “boot-up” in 
newborns before there is apt cortical wiring and strengthening of synapses, 
and later during normal operation after rudimentary feature definitions 
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have been established by such wiring and synapse training at each level of 
a neural network.  Both these boot-up and operational training issues also 
arise when neural links are established in white matter in order to 
communicate between different cortical regions.  Such white matter 
learning and signaling mechanisms are still very poorly understood. 

 We conjecture that once each sensory, motor, and conceptual region 
has locally established its initial synaptic and feature structure at its middle 
and higher levels, it can begin to emulate an independent sensory area that 
can boot-up and train neurons in white matter to serve as useful links to 
other cortical regions.  It could also simultaneously train any feedback 
neurons in such links and perhaps gain one or more of their advantages 
(noise reduction, sequence perception, compression, and associative 
memory capabilities).  Passage of white-matter neurons through the 
thalamus also offers an opportunity for spike and pattern synchronization 
since it is known to have a timing function of unclear nature. 

 The plausibility of this white-matter communications hypothesis rests 
largely on that of the similar training protocols and operations proposed for 
multi-layer neural networks employing feedback in Section 5.1.  In an 
abstract sense such multi-layer spiking networks with significant feedback 
have no “top” or “bottom,” just two ends providing stochastically complex 
but sparse behavior that maps well end-to-end across multiple neural 
layers.  That is, all environmentally meaningful and distinct events might 
plausibly map across the neural network of interest, e.g., through white 
matter plus any interface logic, to their corresponding interpretations, and 
vice versa. 

 For example, several high-level auditory features in combination 
might trigger one or a few visual responses, while several combined high-
level visual features or objects might trigger one or a few auditory 
responses in a dual-direction hierarchy.  If such signals “ping-pong” end to 
end a few times they would tend to arrive at one preferred solution, much 
as broadband oscillators tend to settle near the single frequency that has the 
largest round-trip gain.  This differs from a unidirectional hierarchy where, 
for example, information might typically progress from pixels toward 
objects, or vice versa, but not both simultaneously. 
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 While training inter-regional white-matter links there presumably 
would be considerable interference due to ongoing cognitive processes 
unless the animal were fully passivated or asleep.  If asleep then the firing 
threshold could more safely be lowered to allow synapse-strength (SS) 
cognons to learn with less “attention noise”.  Equivalent changes in 
neurotransmitters could also boost spike amplitudes with the same increase 
in the probability of learning. 

 But if inter-regional learning occurs during sleep it would help to 
know what drives it, such as replayed memories.  Therefore it would be 
interesting to see if certain sleep regimes are associated with replayed 
memories, and whether some memories are synchronized between sensory 
and other modalities, such as memories involving both viewed seagulls and 
the sounds of their cries, or memories that link the motor cortex with 
spatial memory in the hippocampus.  This inter-regional (white-matter) 
training hypothesis appears to be consistent with the widespread belief that 
sleep helps consolidate recent memories (Stickgold, 2005), and may 
correspond to one of the sequential stages of sleep.  If natural periodicities 
could be associated with particular interregional pathways, perhaps those 
periods could reveal the sleep stage involved. 

 Based on the polynomial approximation at the bottom of Table 3.5 for 
the communications capability (bits/second/neuron) of a single 
homologous SA model neuron optimized for maximum L, there seems to 
be little advantage to using D > 1 (patterns that use more than one intra-
pattern ~1-millisecond time slot) for white-matter communications.  
However, it should be easy to optimize neural learning for communications 
capacity (bits/second/neuron) instead of L (bits/neuron), thus revealing 
whether there are any advantages to having D > 1 in that more plausible 
case; but this has not yet been done. 

 If D = 1 because there are no computational advantages to D > 1 for 
the CB model, then it should be easier to interpret observed white-matter 
communications, assuming enough neurons in any bundle could be 
monitored (a major experimental challenge).  In fact, the homologous SA 
model neurons optimized for L seem to communicate a relatively constant 
number of bits/neuron/second, and to store a relatively constant number of 
bits/synapse, where the maximum packing density of both neurons and 
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synapses is reasonably constant for biological reasons.  Brain volume may 
therefore primarily limit both the total bits/brain and total bits/second/brain 
for SA L-optimized model neurons, where these two metrics may depend 
relatively little on parameters like C, D, and So. Readers who skipped 
chapters 2 and 3 might best jump to Chapter 6. 

  One potential exception may be a dependence upon brain simplicity.  
For example, Table 3.5 suggests on its second and last lines, respectively, 
that the bits/synapse and bits/neuron/second for optimized neurons vary 
inversely with R and H, whereas the fourth line suggests that the number of 
mature synapses Sm, and hence neuron size, increases with R and H.  
Tables 2.3 and 2.4 yield a similar conclusion: simpler neurons appropriate 
for insects and small animals can be more efficient per synapse and per bit, 
but are nonetheless disfavored relative to more powerful brains when the 
cognitive challenges are greater. 

 

5.5 Approaches to analyzing neural networks with rich feedback  

 The most tractable approach for adapting this extended spike-based 
CE neuron learning model to the rich feedback case is probably to continue 
limiting the initial studies to the additive processes discussed in Section 5.2 
that can arguably detect pattern sequences, improve signal-to-noise ratios, 
offer advantages of source coding, and enable content-addressable or 
associative memory.  All these benefits seem addressable using single-
neuron simulations and, with some creativity, may be partially addressed 
analytically. 

 Although neural models with some inhibitory synapses may more 
readily approximate direct subtraction, the data rate for the error 
information sent upward per A+B comparison neuron, even using 
inhibition, could not easily exceed roughly one bit (based on one spike) per 
pattern change (each change represents a difference between expectation 
and reality).  Given the increased complexity of mixing excitation and 
inhibition synapses, and the expected limited increases in pattern-
correction information available per neuron, inhibition studies might 
usefully be postponed until the limits of simple additive processes are 
better understood. 
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 Once single-neuron training and performance are understood, several 
individually optimized neuron models might be arranged in two layers that 
could be simulated as before, with a training period followed by recall tests 
that measure recognition performance for learned and novel excitation 
patterns applied to the first neural layer. 

 Application of these initial results to white matter communications 
with rich feedback might begin with a symmetric network with equal 
numbers of A and B synapses on each neuron so there is no “top” end. 
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Chapter 6 

Waking visual anomalies, hallucinations, 
and cognons 
 

6.1 Observations and interpretations of waking visual anomalies 

 Due to their brevity (less than a few seconds) and character, waking 
visual anomalies (WVA) appear to be a new phenomenon reported here for 
the first time, although some might consider them a subset of hypnopompic 
anomalies (anomalies experienced upon waking), which are often 
experienced minutes to hours after subjects awake.  In any event WVA 
appear to be inadequately documented.  WVA may also be related, for 
example, to the brief hypnagogic illusions (anomalies experienced while 
first falling asleep) reported by subjects subsequent to playing the 
computer game Tetris (Stickgold et al., 2000). 

 WVA were observed on multiple occasions by the lead author (DHS) 
and are detailed here.  One reason WVA anomalies are seemingly 
unknown is that they are very infrequent and typically last less than a few 
seconds upon waking.  Moreover, they can occupy only a portion of the 
visual field and always disappear instantly when one opens one’s eyes to 
the light.  For these reasons they are more difficult to study than the more 
common longer lasting hypnagogic and hypnopompic illusions.  DHS does 
not recall ever having either post-sleep hypnopompic or pre-sleep 
hypnagogic experiences.   

 We hypothesize that WVA occur when some small part of the cortex 
awakes unevenly, resulting in local or foveal failure to lock together the 
upward and downward flowing information.  These very brief failures lead 
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to local perceptual errors manifest as WVA.  They presumably last until 
the control loop system suggested in Figure 5.3 locks the upward and 
downward information flows together. 

 When they are not locked, the downward flow is apparently 
perceived as it exists near the neural layer where locking failed, thus 
possibly providing clues to the processing that may occur in that neural 
layer of the human visual system.  As explained later these clues suggest 
how some neurons or layers might code images using spatial basis 
functions and time-domain multiplexing, and that the human brain may 
have the ability to record and replay “movies,” sometimes in reverse at 
high speed. 

 Because of the potential implications of these observations, it is 
important to understand why they have not been widely reported before.  
First, they are extremely rare; most of the individual WVA observations 
reported here were separated by months to decades, representing a lifetime 
average of roughly one second of data per year, concentrated after age 65.  
Second, a WVA immediately vanishes when the two-way signal flow locks 
together, so the observer has to be quick (< 1 second) to sense that the 
phenomenon is present and then make a conscious effort to remember and 
report what was seen.  This seems unlikely unless the observer deduces its 
neurological and cognitive implications or is a study participant.  Third, 
most people experiencing such a rare and brief event would no doubt open 
their eyes and forget about it.  Finally, based on one subject, WVA occurs 
primarily in infants or in the elderly, not unlike the hypnopompic state. 

 The subject, DHS, is an exception because sometime before age 
three he became sensitized to WVA when he awoke from a nap facing a 
strange carpet over the edge of a bed.  His field of view was initially filled 
with swirling colored paisley patterns that slowed within 2-3 seconds and 
became the patterns on a previously unnoticed oriental rug.  This was his 
first retained memory because it was so interesting, and it sensitized him to 
recurrences, all of which then occurred after age 55.  By then he had 
become sufficiently immersed in image processing and coding issues that, 
despite their brevity, these WVA events were technically informative.  We 
now conjecture that the swirling was the young brain’s attempt to reconcile 
the strange new pattern with prior memories using only weak corrective 
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signals that required a couple of seconds to lock together the upward and 
downward flows of information.   

 The next remembered individual WVA occurrences were spaced at 
intervals of several years.  At first a transient set of dark almond shapes 
would typically flash randomly and independently in time, position, and 
orientation, where perhaps 10-20 might fit across an approximately foveal 
field of view and only 10 shapes might be visible at a time (corresponding 
perhaps to R ! 30), where each “frame” lasted less than 0.2 seconds and 
probably was the result of a sliding time window integrating ovals that 
flashed much faster.  A rough representation of such an instantaneous 
image appears in Figure 6.1(a); it was observed for less than a few seconds 
on perhaps three or four occasions. 

 

  
 
 

 
 

Figure 6.1.  Approximate renditions of perceived transient waking 
anomalies that typically lasted 1-3 seconds and changed at rates roughly 
between 12 and 30 Hz; the overlapped instantaneous images suggest the 
higher rates.   

 

 These natural experiments suggest that some single level in the 
feedback system might be temporarily unsynchronized so as to reveal at 
least one of the dominant features utilized at that level.  In this view such 
ovals might correspond roughly to some subset of wavelet-like basis 
functions created by a neuron or neural column that is asynchronously 
flashing inappropriately, and this malfunction is being perceived correctly.  
That is, if the upward flow is asynchronous or random at some neural level 
then the perceived features will not be stable but will change randomly, 
perhaps at 30-millisecond intervals.  These features would presumably be 
restricted to those features characterized at that level at that time.  The fact 
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that WVA disappear instantly when the eyes see a bright scene suggests 
that WVA end when perceptions lock to a stronger image, ignoring the 
weak malfunctioning signals. 

 Another brief WVA (4 seconds, age 72) involved a pure motion field 
of densely spaced tiny differently colored single-pixel-sized dots 
approximately filling the foveal field and moving in a swirling pattern.  
The dots were spaced several dot diameters apart.  At one location the 
motion’s radius of curvature was only a few such pixels, and perhaps even 
one or two.  The dot velocities were such that a dot might cross the field in 
4-8 seconds.  Since a key metric of motion fields is their spatial resolution 
and this image resolution appeared to be on the order of a few pixels or 
less, the motion field alone conveyed substantial information, again 
illustrating the incredible image-generating power of the mind.  Because of 
the large scale organization of this WVA, it probably was created at a 
higher level and arose because of a lack of sensory input. 

 A different set of WVA’s began in 2007 (age 68) and immediately 
led to the initial analyses and simulations that underlie this monograph.  
The initial image lay in the lower left quadrant of the visual field and 
consisted of just one tiny white circle containing partial segments of what 
appeared to be many letters of the alphabet, for example, perhaps a piece of 
an “e” or a “g” in black ink.  Figure 6.1(b) suggests the nature of this 
dynamic image, the diameter of which might have been about one-
twentieth that of the foveal field.  The figure is misleading in that only 
about half a letter was actually observable within the white circle.  It was 
presented for less than three seconds at more than 10 frames per second 
and therefore was only barely discerned. 

 Because of the image’s small size and limited total number of pixels, 
say 200, it was conjectured that perhaps only one neuron or one column of 
neurons might be asynchronously firing rapidly, randomly transmitting 
members of its library of features that subsequent neurons might normally 
be able to interpret if they were properly synchronized.  It is reasonable to 
assume that the upper neural levels correctly reported this asynchronous 
firing since the individual image flashes make sense as members of a 
useful library of options for particular tasks.   
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 These observations do not clearly distinguish between two types of 
feature coding: population vs. time-multiplexed coding.  The codes 
described in Chapter 2 are population codes for which the subset of excited 
input neurons conveys the information.  Time-multiplexed codes can 
convey information using the ~2-millisecond time slot at which the output 
soma fires, which could be one of several available within the inter-pattern 
period of perhaps 30 milliseconds.  Each time slot would correspond to a 
different feature.  Population coding could produce random patterns if the 
neurons were firing randomly, perhaps due to low firing thresholds, and 
time-multiplexed codes could produce random patterns for the same reason 
or because the timing of the two information flows became unsynchronized 
at that neural level. 

 Initially we interpreted each mistimed spike as a different pre-
learned image associated with its own learned time slot within a presumed 
gamma-wave or other periodic cycle.  The initial concept in 2007 was 
therefore that the exact timing of a neuron’s output spike might indicate the 
recognized feature, or letter of the alphabet in this case, using time-division 
multiplexing like that used in some communications systems. 

 This speculative conjecture concerning time-multiplexed pattern 
recognition within single neurons led to development of a D > 1 neural 
model over the next few years, which then led to the current family of 
extended cognon neural models.  A couple of years then passed before the 
second time-multiplexing WVA was observed and interesting suggestions 
of photographic recall started to appear. 

 These suggestions of photographic recall began with a WVA that 
again occupied a small percentage of the foveal field and was again off 
center to the lower left.  It had a light beige oval or hotdog-shaped 
background that encircled perhaps several letters of the alphabet, where the 
entire set of letters was again being replaced at the same 10-20 Hz rate (full 
letters, not fragments).  Figure 6.1(c) approximates this image at one 
instant, as perceived with some time overlap. 

 This general illusion recurred perhaps three times at intervals of 
months to a year with the number of letters increasing slightly each time.  
On the last occasion, the letters “Jenn” may have been discerned briefly, 
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these being the first four letters of the name of a recently frequent email 
correspondent, as recent as the previous day.  This very tenuous evidence 
suggested these word fragments might conceivably represent very recent 
photographic memories of a viewed LCD computer screen, a highly 
speculative hypothesis that was partially reinforced shortly by other 
observations.  It is probably relevant that DHS spent much time viewing 
black letters on a white LCD display that flickers at a high rate; the flicker 
may be relevant because WVA often involve highly dynamic LCD images, 
and the flicker may resonate with certain natural EEG frequencies. 

 Much later (age 73) another type of WVA apparently probed a third 
neural level where the faint image of text was nearly foveal and appeared 
to be convolved with a Laplacian that produced ringing around the edges 
of the letters while retaining zero-mean intensity across the text.  The half-
power width of the Laplacian might have been approximately one-fifth the 
widths of the letters.  This WVA appeared twice, once when stationary 
(nearly invisible) and once when moving at normal non-reversed 
velocities. 

 Another type of WVA suggesting photographic memory lasted 
roughly up to three to five seconds.  These WVA events occurred perhaps 
6-8 times at intervals of months and usually after a nap or the next morning 
following DHS’s generation, editing, and display of text on a 24-inch flat 
panel computer display.  Such editing often ended by scrolling entire 
lengthy manuscripts, start to finish, looking for obvious format problems at 
perhaps one or two pages per second; the font was dark gray on a white 
background.  In this case the scrolled text often moved up the screen at that 
speed.  In marked contrast, the WVA often consisted of full-page-width 
text with paragraph indentations and separations moving downward several 
times faster in the opposite direction.  This was a time-reversed accelerated 
replay of what appeared to be scrolling text.  The font seemed too small or 
blurred to read, even if it had moved more slowly, whereas the original 
font was legible when static. 

 Two other related WVA’s occurred a few weeks later, this time with 
nearly static fields of text lasting about 4-6 seconds.  The first was of a 
large nearly stationary full-page-width textual image of nearly legible gray 
text on a white background that was missing narrow meandering streaks 
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that randomly ran through it diagonally, leaving roughly 6-10 large islands 
of full text several words wide.   

 The second and most surprising event was again a full-width stretch 
of similarly stationary complete text, approximately foveal, that was 
dynamically being erased from the end at a pace that exceeded normal 
typing speeds by a factor of at least five.  The timing of the erasures was 
consistent with irregular typing of phrases.  Thus it was apparently another 
example of an accelerated time-reversed foveal memory with full-page 
content.  The text probably would have been barely legible had the 
dynamics not been so distracting. 

 Because of the potential significance of human accelerated or time-
reversed recall processes, it is important to have confirming evidence.  One 
independent observation supporting the hypothesis that humans may 
experience time-reversed or accelerated visual memory replay was 
reported for one subject who visualized sequential erasure of rows of Tetris 
blocks during a hypnogogic memory that lasted several seconds and 
followed hours of playing Tetris on the computer screen; several other 
subjects visualized instead falling Tetris blocks that built up layers as they 
accumulated (Stickgold et al., 2000).   

 Tetris is a computer game that requires the player to manipulate 
falling blocks so as to build up layers of them at the bottom of the screen in 
the shortest possible time.  Since it takes at least many seconds to a minute 
to build a Tetris layer, erasure of two or more layers within a few seconds 
implies time acceleration.  In all Tetris and DHS observations no surround 
was visualized, just dynamic blocks, text, or ellipses. 

 Similar evidence of accelerated replay of visual features may also 
reside in hypnogogic events lasting a few seconds, such as the privately 
reported illusions of windmills and propellers rotating sufficiently fast to 
form a partial blur with a clear direction of motion.  These illusions 
perhaps correspond to time-multiplexed coding of bar-angle outputs from 
known neural complexes that define rotational angles of bars and that are 
perhaps located in the preceding neural level. 

 These time-reversed and time-accelerated events are so singular and 
have such import that it is useful to rule out alternative explanations, such 
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as meaningless hallucinations.  As noted earlier, WVA’s occur only at 
waking, last less than a few seconds while the subject is fully conscious 
and aware of reality, and usually consist of images moving or changing at 
abnormally high rates.  In contrast, hallucinations usually resemble reality 
or reasonable distortions of it, and tend not to be time-compressed, quite 
unlike high speed “untyping” or erasure of layers of Tetris blocks. 

 The high speed reverse-time presentation of these waking visual 
anomalies (WVA) is most interesting in view of numerous observations of 
the dreaming patterns of rats that sometimes trace their steps in a maze in 
reverse order, from cheese to entrance.  These dreams, sensed by arrays of 
electrical probes in the rat’s hippocampus, occur at speeds that are several 
times faster than in life, although time is not always reversed and the time 
scales are not always compressed (Davidson, Kloosterman, & Wilson; 
2009). 

  Two-dimensional video recordings played back in reverse at high 
speed, even in black and white, are extremely difficult to explain unless 
time is mapped to space, probably in the hippocampus.  For example, if 
video frames were arranged in a linear spatial sequence, first to last, then a 
frame trigger that moves forward or backward through space/time at a rate 
determined by a variable clock might explain such variability.   But how 
such a memory array would be structured, trained, and triggered for replay 
is unclear.  

 These WVA pose another problem.  If they are time-multiplexed 
they suggest that there are more time slots, within which one feature is 
recognized, in each inter-pattern period than seem plausible in view of the 
discussion in Section 3.3 relative to gamma waves (period of ~30 
milliseconds).  For example, in a 30-millisecond period there are fewer 
than 30/2 = 15 2-millisecond time slots available.  However, if WVA 
memories are associated with inter-regional or other communications 
operating in the 1-5 Hz region, they might accommodate over 100 time 
slots rather than fewer than 15.  In this case the period with which the 
WVA cycling features reappeared could be 0.2–1 second; unfortunately 
this period was not discernable because the features cycled too fast.  
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 Since most mammals exhibit similar brain function, perhaps the 
observed accelerated and time-reversed phenomena are shared too.  
However, such time-reversed recall across species seems highly unlikely 
unless it reflects fundamental computational functions, such as the linking 
of inter-regional memories or the reinforcement or erasure of memory 
sequences.  WVA-like phenomena appear to offer the only easy window 
into such mechanisms in humans because WVA reveal what the sleeping 
brain was thinking in the absence of the noise of consciousness.  However, 
the anomaly is visible only for a maximum of a few seconds until a slow-
to-awake sensory system takes over and ends it.  Hypnagogic memories 
sometimes provide similar insights and typically last longer (Stickgold et 
al., 2000). 

 Since viewing a computer screen before sleeping produced such 
WVA on multiple occasions, it may be possible for others to confirm these 
observations.  The best subjects are probably older, perhaps over 65, and 
therefore presumably more susceptible to transient waking anomalies that 
rely on slow-to-awake neural sub-networks.  It is interesting to note that 
the duration, field of view, and frequency of the WVA increased slowly 
with the subject’s age, and then more rapidly as health began to decline 
after age 70.   

 These WVA, taken together, arguably provide useful clues about the 
human visual system and its memory and processing mechanisms at 
various neural levels.  These clues might help guide theoretical and 
simulation-based approaches to understanding cortical computations based 
on spike processing.  Until such experiments can be systematized and 
repeated their utility will be restricted to suggesting new research 
directions.  Perhaps exposing subjects to similar images at different flicker 
rates during the day may stimulate such WVA, but the multiyear intervals 
between some occurrences suggest that any strategy may be difficult, 
particularly in view of the typical 1-3 second durations of WVA and the 
need for attentive observers. 
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6.2 Experiments in initiating and terminating hallucinations 

 The following observations by DHS and others are different in kind 
from those of WVA.  Most of these phenomena are neither brief nor 
associated with waking.  They are included here because they tend to 
reinforce the feedback model of Figure 5.3, which suggests how local 
sensory spike-based patterns could excite increasingly global spike-based 
concepts at successively higher neural levels, and vice versa.  They also 
suggest how disruptions in the consistency or “lock” between these two 
information flows would force the upper levels to imagine reality and 
hallucinate, and how strengthening the sensory stream can restore lock and 
abruptly end weak visual, auditory, and olfactory hallucinations. 

 The first set of illusions and hallucinations were induced by strong 
pain-killers.  These illusions were weak and occurred during full 
consciousness while DHS drifted into and out of sleep at perhaps 5-10 
minute intervals during the night following surgery.  That night offered 
many opportunities to perform experiments with illusions, where each 
illusion lasted a minute or two.  Alternatively each illusion was easily 
ended at will by fully opening the eyes in the partially darkened room to 
view a clock on the opposite wall.  The clock was sufficiently distinct to 
lock perception to reality and immediately terminate the visual effect.  
DHS had never been exposed to hallucinogens prior to this, and had never 
experienced any hallucinations 

 At first it was difficult to elicit these illusions because they usually 
evolved over a minute or so and viewing the clock promptly ended them; 
keeping the eyes nearly closed soon solved that problem.  Once ended by 
opening the eyes, no illusion reappeared without a similar rebuilding delay 
of perhaps half a minute or more, and usually only after a new awakening. 
These illusions initially evolved slowly from blackness into a uniform flat 
fabric of similar darkness except that the warp and woof slowly became 
clearer.  As the hours passed more elaborate illusions were teased into 
being, each evolving slightly faster but still lasting less than a minute or 
two.  First, the fabric typically tended to evolve into more elaborate but 
generally similar static images. 
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 Perhaps the most illuminating was wall-to-wall randomly shaped and 
positioned round and oblong grey and brown pebbles, perhaps 20 in each 
direction over an approximate foveal field.  These illusions were roughly 
circular and not “wide screen.”  Next a realistic flowing water stream 
slowly took form above the pebbles, implying that the illusion had properly 
superimposed a transparent dynamic multi-direction motion field in front 
of a static one.  Finally the illusion slowly added solar highlights on the 
water surface that realistically moved as the water flowed, thereby adding a 
third distinct motion field superimposed on the other two.  And this was 
done with spikes.   

 One might suppose that such a complex three-motion-field image 
could only be synthesized by viewing nature and locking to it, yet this was 
synthesized totally internally in real time, a difficult real-time image 
generation challenge even for powerful computers.  DHS had seen such 
illuminated streams in nature so the scene was not pure fabrication.  These 
first observations of weak-hallucination initiation and termination later led 
to another series of informal experiments and anecdotes discussed in 
Section 6.3. 

 These experiments in the initiation and control of illusions or partial 
hallucinations motivated additional natural experiments of opportunity that 
are more anecdotal than formal, but nonetheless may be informative.  The 
first set involved auditory hallucinations suffered by several strangers who 
phoned DHS with concerns that someone was talking or listening to them 
or to someone they cared for, and possibly even controlling them using 
radio waves.  Claimed curiosity about radio-wave behavior was usually the 
stated purpose of the call.  In most cases respectful discussions of the 
symptoms suggested that the subject was probably experiencing 
hallucinations and was likely to be schizophrenic.  When discussed later 
with psychiatrists this diagnosis was usually found plausible. 

 One call about the radio-wave hypothesis was from a woman in her 
40’s who lived with her mother and who had been mostly unemployed 
since childhood because she often heard voices.  Since she did not always 
hear them, the feedback loops appeared to be marginally functional.  This 
observation led to the hypothesis that if she increased the intensity of the 
ambient auditory input, the resulting increased error signal in the feedback 
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control system might enable her consciousness to lock to it so that the 
audio hallucination would disappear.  In partial confirmation she then 
volunteered that her problem was most prevalent when the room was quiet 
and that when she listened to music the problem was not there, although 
she had never connected these two facts.   

 DHS then suggested that any time voices bothered her she might 
listen to a music or radio source using unobtrusive ear buds or the 
equivalent.  She seemed delighted because her prior experience had taught 
her that the music trick was both simple and effective.  In fact, student 
psychiatrists are sometimes taught that music can control mild auditory 
hallucinations.  

 About two years after this story had been shared with a psychiatrist 
at a party, he cited the case of a young patient in his twenties whom he had 
consequently advised to buy headphones and a music source.  This patient, 
previously unemployed for a long period, then soon found employment as 
a cook.  It therefore seems plausible that many cases of mild auditory 
hallucinations could be helped by unobtrusive audio input. 

 It is not obvious that strengthening external stimuli would restore 
healthy locking of consciousness to reality.  For example, if A < B and if 
the error signal |A – B| is inadequate to lock the loop (where A and B refer 
to the synapse sets illustrated in Figure 5.1), then it would seem that |2A – 
B| might be even more inadequate.  However if the control system were 
alternatively designed to ignore error signals when either A or B is too 
weak and therefore noisy because there are too few spikes, then increasing 
A to 2A could indeed close an open control loop. 

 That nature would disable noisy feedback circuits makes sense, 
particularly if other sensory signals can stabilize the perception of reality, 
just as blind people can “see” using auditory and other inputs.  Traumatic 
or even unpleasant thoughts and events might also be tolerated better by 
temporarily breaking such loops and substituting helpful hallucinations or 
illusions.  Such illusions could even be conceptual, where an unpleasant 
thought, such as losing an unaffordable bet, could be replaced by the 
temporary non-adaptive thought of winning the next bigger bet.  Similarly, 
the health consequences of a midnight trip to the refrigerator, or those of 
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unethical behavior, could be ignored by the stress-induced temporary 
unlocking of white matter links between areas of the brain involving 
judgment and desires. 

 Another potential application of strengthened stimuli is to post-
traumatic stress disorder (PTSD) patients who suffer from occasional mild 
flashbacks.  The hope is that such hallucinations might be terminated by 
strong orthogonal signals, such as newscasts from an exciting football 
game, that introduce a different reality of sufficient sensory and emotional 
strength for the patient that the new “reality” could lock perception to itself 
and thereby terminate the flashback.  Only careful experiments could 
determine the practical utility of this hypothesis.  If the hypothesis is valid, 
then perhaps sensitive body-mounted stress and function sensors could 
introduce such distracting and reality-restoring sounds automatically when 
needed, but much testing would be needed. 

 Hallucinations can also be olfactory.  A unique and brief experience 
of DHS with olfactory hallucinations was probably enabled by an 
imperfect air flight under some stress at age 72.  It was then probably 
triggered by residual smoke in the hotel room because at first that was the 
only place the smell was evident and long lasting.  The same smell then 
appeared the next day outdoors and typically lasted for many seconds or 
more after an outer sweater, worn earlier in the hotel room, was brushed.  
Over a period of a week or so the false smell became more common and 
less dependent on the sweater, which led to the hypothesis it might be an 
olfactory hallucination. 

 This olfactory hallucination typically lasted from a few seconds up to 
a minute at most.  Over the following few weeks it occurred perhaps an 
average of once per day in odor-free environments for typical durations 
that shortened gradually to the 1-2 second duration of a single soft 
inhalation.  It could be terminated by smelling something else, although 
later its natural duration became so short that this experiment could no 
longer be performed. 

 The most effective trigger for this olfactory hallucination seemed to 
be the combination of a normal brief soft inhalation plus some uncertainty 
or self-doubt, although that would not explain its rarity.  The triggering 
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smell also slowly drifted slightly toward more acidity.  A seemingly 
effective test of whether the smell was a hallucination was to inhale more 
strongly a few seconds afterward, and on those occasions no such smell 
was noted.  That is, the trigger was highly specific and apparently included 
the need for a brief soft inhalation.  After a few months the experience 
decayed to weekly intervals of 1-2 second periods and then disappeared 
altogether.  

 At about this time an expert relayed the apocryphal but allegedly true 
story of a woman troubled by more frequent and obnoxious smells who 
was cured by smelling her favorite odor, violets.  Unfortunately it was 
quite inconvenient to constantly carry violets, so much later her doctor 
suggested that enough time had passed that she should try imagining the 
smell of violets instead, a cure that allegedly worked.  Thus it is reasonable 
to conjecture that if hallucinations are sufficiently avoided by any strategy, 
they may eventually weaken and vanish; this is presumably already well 
established in the literature. 

 One final observation concerning cognition and the image 
synthesizing skill of cortex: our visual experience seems to evolve with age 
in largely unnoticed ways.  In this case the evidence is again poorly 
calibrated but was persuasive to DHS.  While an adolescent he stopped to 
stare at a tall pine tree and noticed the personally unprecedented extreme 
visual three-dimensional reality of its trunk, branches, and needles, a 
degree of improved sensory reality that subsequently lasted a lifetime.  
This was presumably enabled by the normal significant increase in 
synaptic density that occurs during adolescence. 

 Such an improvement might plausibly result for the two-stream 
model if the numbers of B synapses increased during adolescence, since 
the richness of the B-stream information is speculated to be a direct 
reflection of the richness of the cognitive experience.  A second 
requirement for such an improvement would be a noticeable increase in the 
richness of the stored or memorized image set from which the complex 
visual field is synthesized in real time; this might reasonably be manifest as 
an increase in synapse numbers during such an adolescent growth event. 
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 A possible test of this hypothesis is to compare the perceived 
qualities of visual realities for images that differ only in the frequency at 
which their underlying elements might have been viewed in preceding 
years.  For example, suburbanites might be more sensitized to trees while 
city dwellers might be more sensitized to buildings. 

 To partially test this hypothesis an experiment of uncertain merit was 
devised.  A suburban subject with 20-20 vision stares from a distance of 
perhaps six feet at an interesting tree with an exposed trunk having 
branches and fine leaves or needles.  After realism peaks the subject then 
tilts perhaps 30 degrees to one side and views the same scene until realism 
again peaks.  The hypothesis being tested would predict that if the tilted 
view was rare in previous years its perceived reality would be reduced.  
Personal observations suggest that the tilted view is sometimes perceived 
as less “real” than the normal view, depending on the person and the scene. 

 One implication is that what one repeatedly views can partially 
determine how vitally real it can seem, and that those who never see woods 
or other categories of objects may never have the same appreciation of 
them that others may have, simply because they don’t perceive them in 
“three-dimensional high definition.”  Similar differences may also 
distinguish the musically or physically talented from others partly because 
their cognitive system has a richer set of B synapses in those cortical areas 
due to talent and training. 

 Hopefully the suggestive clues in this section concerning WVA, 
illusions, hallucinations, and perception may help others devise more 
revealing experiments that can accelerate understanding of how the brain 
computes and perceives and how that learning might advance medicine. 
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Chapter 7 

Summary and conclusions  
 

 In addition to the summary of conclusions presented in Section 4.1, 
more speculative hypotheses include: 

1) Cognons using the feedback mechanisms summarized in Section 4.1 
can convey high-quality spike-based information about perceived reality 
downward through multiple neuron layers toward the sensors so that it can 
be compared at many of these layers with the upward-moving sensory 
information and then be used to update current perceptions at rates above 
~5 Hz.  This is consistent with the brain’s observed ability to construct 
ultra-realistic three-dimensional images and to conceal blind spots by 
utilizing spatially adjacent information. 

2) Synapses in multiple-layer dual-flow neural networks can be trained 
sequentially layer by layer, beginning at the sensory end and alternating 
between synapses that feed information upward and then those that feed 
information downward.  Once a basic synaptic and hierarchical feature 
framework is established bottom to top, then it should be editable 
throughout life, and the synapse ratio B/A might increase with age. 

3) Those neural layers or regions having superior perceptual models of 
the organism’s external and internal sensory environment will presumably 
radiate more neurons toward less potent layers and regions than they 
receive from them, e.g., from superior conscious perception toward inferior 
informative regions such as the eyes. 

4) The mechanism of hypotheses (1-3) also appears applicable to the 
training and operation of inter-cortical communications links made via 
white matter, where the evolving correlations among various pairs of 
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cortical regions should be conceptually and computationally similar to the  
life-long evolving correlations between each sensory system and its upper 
cognitive layers. 

5) Hypothesis (3) further suggests that neuroanatomy may provide 
clues as to the hierarchical locus of consciousness since those regions 
nearer the core of consciousness would presumably radiate outward 
proportionately more white-matter neurons and synapses than they receive 
from more peripheral elements.  It seems reasonable to expect that this core 
of consciousness might span many cortical and other regions. 

6) Strong feedback appears to offer at least four opportunities to 
improve perception by helping to: a) recognize pattern sequences, b) 
improve signal-to-noise ratios for sensed signals, c) enable source data 
compression so that fewer synapses are required, and d) offer the 
functionality of an associative or content-addressable memory. 

7) Waking visual anomalies (WVA) appear capable of providing useful 
clues regarding human visual system signal characteristics at neural layers 
that are temporarily slow to function correctly upon waking, which would 
seem more likely in subjects over 70 years of age.  Unfortunately, deriving 
such information requires a subject’s nearly instant recognition of the rare 
event and then memorization of its more neurologically informative 
characteristics. 

8) Instant temporary termination of objectionable weak hallucinations 
appears to be practical using sensory signals that are sufficiently strong 
that they can increase the strength of the error signal sent upward so as to 
successfully lock perception to reality.  Examples include music that 
terminates false voices, viewed objects that end weak visual hallucinations, 
and strong smells that terminate olfactory hallucinations. 
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Appendix A 

Derivation of L, the information stored per neuron  
 

 This derivation elaborates on the summary derivation presented in 
Section 3.2.  The recoverable information stored in a neuron, an average of 
L bits over an ensemble of such neurons, imperfectly characterizes which 
w input excitation patterns that neuron saw during training while plastic 
and learning-ready.  Each pattern is independently selected for training 
from a universe of size z, where the known probability of training each 
pattern prior to maturity is: 

 
=T
wp
z   (A.1) 

The set of patterns trained represents information provided by a particular 
environment, which is characterized by the random vector#X * +, where 
the number of possible environments |+| = 2z and: 

 #Xi, 1 , i , z = 
1,   if pattern  is taught
0,   else                           
!
"
#

i
 (A.2) 

 The information L is extracted by observing the mature neuron’s 
responses to all z patterns, where:  
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 L = I1z = 1 = I z = I[ ] = I[ ]   H[ ] !i i iL X,Y X ,Y z X z  (A.4) 

 I1 is the average information provided by a single pattern in set of 
z, H[ ]iX is the entropy of#Xi, w << z, and we either know for the SA 

model, or reasonably assume for the SS model, that the pattern learning 
sequence does not materially change L for the reasons discussed earlier.  
Moreover the learned patterns are uncorrelated for the SA model because 
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all synapse weights equal unity during learning, and in the SS model the 

modest correlations between the sparse learned patterns iY do not 
materially change the result L since w << z, also as discussed earlier. 

 To simplify the notation, let#Xi & x and#Yi & y.  Then from (A.4) and 
the definition of mutual information in equation (1) we have: 
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L= z p x, y p x, y p x p y
  

    (A.5) 

where the marginal distributions of x and y follow: 

 (0) 1 ,   (1)= ! =X T X Tp p p p  (A.6) 

The conditional probabilities are:        

 (1 | 0) ,    (1 |1)= =Y|X F Y|X Lp p p p  (A.7, A.8) 

where pL denotes the “learning” probability that a pattern taught to the 
neuron is learned (fires), pF denotes the “false-alarm” probability that an 
untrained pattern is learned, and: 
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The sum in (A.5) can be divided into four terms tk for which: 

 (0,0) (0 | 0) (0) (1 )(1 )= = ! !XY Y|X X F Tp p p p p  (A.11) 

 (0,1) (1 | 0) (0) (1 )= = !XY Y|X X F Tp p p p p  (A.12) 

 (1,0) (0 |1) (1) (1 )= = !XY Y|X X L Tp p p p p  (A.13) 

 (1,1) (1 |1) (1)= =XY Y|X X L Tp p p p p  (A.14) 
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and:  
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after algebraic simplification.  Invoking Taylor’s Theorem the final term of 
(A.15) becomes: 
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After simplification using (A.1) and (A.16), (A.15) becomes: 
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where w is the number of patterns taught.  The remaining three terms 
involving equations (A.12) - (A.14) can be similarly simplified using 
Taylor’s Theorem: 
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 Noting that pT << pL and pT << pF and summing the four terms 
(A.17) - (A.20) yields: 

  
2 2
1 (1 )log log
1 (1 )

! "# #$ +% &# #' (
L F L

L
F L F

p p pL w p
p p p   (A.21) 



!

!

! ! ! ! ! $$%!

This suggests the important result that the recallable Shannon information 
L (bits/neuron) = 0 if pF " pL. 
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Appendix B 

Basic and Extended Neuron Simulator Description 
 

B.1 Overview 

 The simulator used for the presented results is written in C++ using 
the C++ Standard Template Library (STL) for simplicity and OpenMP for 
parallel performance, and it operates in a standard Linux environment.  It 
has also been built and run on Windows in a cygwin environment. More 
complete source code listings and any updated versions are available for 
download from http://cognon.net or from the second author1.  The CB 
neuron learning simulator trains and tests an ensemble of neurons having 
given parameters and reports the average results for various parameters, 
such as the average and standard deviation of the probability of learning, 
the probability of false positives (false alarms), and the learned 
information.  The full set of collected statistics that may be reported is 
contained in the code in the class NeuronStatistics, which is declared in 
compat.h. 

The CB time-domain neuron simulator uses two key classes of 
variables: neurons and words.  Each neuron has So synapses, each of which 
has a strength value that is set to either unity or G prior to being exposed to 
each new word vector, and also a boolean vector “frozen” value of 
dimension So which is used only for the synapse atrophy (SA) variant of 
the CE neural model introduced in Chapter 3.  Initially, all synapses have 
strength one.  A word contains a list of those input synapses that fired for 
the most recent given excitation pattern, and a single neuron matrix 
corresponds to a chronological list of words, one per excitation pattern 
presented to that neuron. 

                                                
1 Carl Staelin may be reached via email at staelin@acm.org.  His personal 
website is http://member.acm.org/~staelin 
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 The pseudo-code for both words and simple neurons along with the 
routines “expose” and "train" are shown here: 

struct word { 
  vector<int> offset; 
}; 

struct neuron { 
 double H; 
 int S; 
 vector <double> strength; 
}; 

bool expose(word* w, neuron* n) { 
  double sum = 0.0; 
  // Compute the weighted sum of the firing inputs  
  for (int i = 0; i < w->offset.size(); ++i) { 
    sum += n->strength[w->offset[i]]; 
  } 
  if (n->H <= sum + epsilon) return true; 
  return false; 
} 

bool train(word* w, neuron* n, double G) { 
  if (expose(w, n) == false) return false; 
  // Set the strength for participating synapses to G 
  for (int i = 0; i < w->offset.size(); ++i) { 
    n->strength[w->offset[i]] = G; 
  } 
  return true; 
} 

Expose models how the neuron reacts to excitation patterns, and how it 
computes whether or not to fire.  This is embedded within an envelope that 
calls this code.  Expose computes the weighted sum of the input word, and 
the neuron fires if that sum meets or exceeds a threshold.  The weighted 
sum is the sum of the So element-by-element products of the most recent 
neuron vector, the current word, and the neuron frozen Boolean vector.  
The firing threshold is increased slightly by “epsilon” to avoid effects of 
rounding and representational errors in floating point arithmetic.  

To train a neuron, “train” is called for each word to be recognized.  If the 
neuron fires for that word then all synapses that contributed to that firing 
have their strengths irreversibly increased to G.  Once training is complete 
the neuron's threshold value H is set to H·G by the external code which 
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also hosts the neuron model parameters R and w, where 1/R is defined as 
the fraction of the words for which each synapse independently fires, and 
w is the number of words to be exposed to the neuron during training. 

  

B.2  Description: CE spike-processing neuron time-domain simulator  

 The key classes are Learn, Neuron, Word, and Wordset.  Important 
supporting classes include NeuronConfig, TrainConfig, Statistic, 
Histogram, and NeuronStatistics.  Word contains a sparse representation of 
the active synapses in the input word.  Wordset is simply an array of 
words, which may also store information regarding the delay slot learned 
for the word during training.  Learn is an abstract class which is used 
during training to modify the neuron.  There are currently two 
implementations, one for the synapse strength model and one for the 
synapse atrophy model. 

 The word class is defined as: 

typedef vector<pair<int32, int32> > Word; 

where vector<> and pair<> are standard STL classes. 

The declaration of the Wordset class is: 

class Wordset { 
 public: 
  Wordset(); 
  virtual ~Wordset() { } 
 
  // Configure the wordset 
  void Config(int32 num_words, int32 word_length, 
              int32 num_delays, int32 refractory); 
  void ConfigFixed(int32 num_words, int32 word_length, 
                   int32 num_delays, int32 num_active); 
 
  // Copy the configuration from anther wordset, 
  // except for num_words. 
  // 
  void CopyFrom(int32 num_words, const Wordset& other); 
 
  // Randomize word vector according to configuration 
  virtual void Init(); 
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  const int32 size() const { return words_.size(); } 
  void set_size(int32 num_words); 
 
  int32 word_length() const { return word_length_; } 
  int32 num_delays() const { return num_delays_; } 
 
  const Word& get_word(int32 i) const { 
    return words_[i]; 
  } 
  void set_word(int32 i, const Word& word) { 
    words_[i] = word; 
  } 
 
  // get/set the trained delay slot for a given word 
  int32 delay(int32 word) const; 
  int32 set_delay(int32 word, int32 delay); 
 
  // get/set the refractory period 
  int32 refractory() const { return refractory_; } 
  void set_refractory(int32 refractory) { 
    refractory_ = refractory; 
  } 
 
  // get/set number of active signals for a given word 
  int32 num_active() const { return num_active_; } 
  void set_num_active(int32 num_active) { 
    num_active_ = num_active; 
  } 
 
 protected: 
  int num_words_;  // Number of words 
  int word_length_;  // Length of words (#synapses) 
  int num_delays_;  // Number of delays 
  int refractory_;  // Refractory period 
  int num_active_;  // Number of active signals 
  vector<Word> words_; 
  vector<int32> delays_; 
  scoped_ptr<RandomBase> random_;  // Random number 
                                   // generator 
 
  void InitOrig(); 
  void InitFixed(); 
}; 

Normal usage is to create a Wordset, configure the wordset via either 
Config() or ConfigFixed(), which imply different methods of randomly 
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initializing each word and will be described more fully later, Init() the 
Wordset to randomize the word, and then get word() to get words to pass 
to the neuron for training or recognition.   

The Neuron class declaration: 

class Neuron { 
 public: 
  Neuron(); 
  virtual ~Neuron() { } 
 
  // Initializes a neuron 
  virtual void Init(const NeuronConfig& config); 
 
  // Expose a neuron to a word. 
  // 
  // A word is a random vector of  
  // [0, ..., d1-1, kDisabled] values, with  
  // non-disabled values on average every R slots. 
  // 
  int32 Expose(const Word& word); 
 
  // Train a neuron to recognize a word. 
  // 
  // A word is a random vector of  
  // [0, ..., d1-1, kDisabled] values, with  
  // non-disabled values on average every R slots. 
  // 
  int32 Train(const Word& word); 
 
  // Start a new training cycle. 
  void StartTraining(); 
 
  // Finished a training cycle, so update synapses and  
  // statistics as appropriate. 
  // 
  void FinishTraining(); 
 
  // Accumulate histograms 
  // 
  // histogram: histogram of delays that could fire 
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  // max_histogram: histogram of delay with maximum  
  //              firing sum 
  // H_histogram: histogram of container summation  
  //              values 
  // 
  void GetInputDelayHistogram(const Word& word, 
                         vector<int32>* histogram, 
                         vector<int32>* max_histogram, 
                         vector<int32>* H_histogram); 
 
  void GetSynapseDelayHistogram( 
                             vector<int32>* histogram); 
 
  // Various functions to report the Neuron's  
  // configuration 
  // 
  const NeuronConfig& config() { return config_; } 
  const int32 C() const { return C_; } 
  const int32 D1() const { return D1_; } 
  const int32 D2() const { return D2_; } 
  const int32 slots() const { return (D1_ + D2_);  
  const double H() const { return H_; } 
  const double Q() const { return Q_; } 
  const double Q_after() const { return Q_after_; } 
  const int32 R() const { return R_; } 
  const double G_m() const { return G_m_; } 
  const double H_m() const { return H_m_; } 
  const int32 length() const { return length_; } 
 
  void set_H(double value) { H_ = value; } 
 
  const int32 delays(int i) const { 
    return delays_[i]; 
  } 
  void set_delays(int i, int32 value) { 
    delays_[i] = value; 
  } 
 
  const int32 containers(int i) const { 
    return containers_[i]; 
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  } 
  void set_containers(int i, int32 value) { 
    containers_[i] = value; 
  } 
 
  const bool frozen(int i) const { return frozen_[i]; } 
  void set_frozen(int i, bool value) { 
    frozen_[i] = value; 
  } 
 
  const double strength(int i) const { 
    return strength_[i]; 
  } 
  void set_strength(int i, double value) { 
    strength_[i] = value; 
  } 
 
 private: 
  NeuronConfig config_;  // Configuration data 
  int32 C_;         // Number of containers 
  int32 D1_;        // Number of input delays 
  int32 D2_;        // Number of axon delays 
  double H_;        // Firing threshold 
  double Q_;        // Oversampling rates 
  double Q_after_;  // Q after training 
  int32 R_;         // Refractory period 
  double G_m_;      // Increment synapse strength by 
                    // this amount 
  double H_m_;      // Synapse-strength threshold value 
 
  scoped_ptr<RandomBase> random_;  // Pointer to random 
                                   // number generator 
  int32 length_;                   // The # of synapses 
  vector<int32> delays_;      // The delay for each 
                              // synapse 
  vector<int32> containers_;  // The container id for 
                              // each synapse 
  vector<bool> frozen_;       // Is the synapse frozen? 
  vector<double> strength_;   // Strength of the 
                              // synapse 
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  vector<double> sum_;        // Per container 
                              // summation values 
  scoped_ptr<Learn> learn_;   // Modifies neuron during 
                              // learning 
}; 

Normal usage would be to create a neuron, initialize it with a configuration 
using Init(), prepare it for learning via StartTraining(), train it on a number 
of words with Train(), complete the training using FinishTraining(), and 
then use it to recognize words with Expose().   

Neuron uses a pointer to a hidden abstract class, Learn, to manage the 
training using the member variable learn_.  Currently there are two 
implementations of Learn, one for synapse atrophy training and one for 
synapse strength.  Neuron's Init() function examines the requested neuron 
configuration and instantiates an instance of the appropriate Learn 
implementation. 

The declaration of the abstract base class Learn is: 

class Learn { 
 public: 
  explicit Learn(Neuron* neuron); 
  virtual ~Learn(); 
 
  virtual void StartTraining() = 0; 
  virtual void UpdateSynapse(int synapse) = 0; 
  virtual void FinishTraining() = 0; 
 protected: 
  Neuron* neuron_; 
}; 

Learn is used by Neuron as follows.  StartTraining is called before training 
begins, to ensure that the neuron is ready to learn.  During training, 
UpdateSynapse is called once for each synapse that participated in the 
neuron firing.  FinishTraining is called when training is complete to 
prepare the neuron for the recognition phase. 

The implementations of synapse strength learning is contained sub-class 
LearnSynapseStrength, whose implementation is: 

void LearnSynapseStrength::StartTraining() { 
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  neuron_->set_H(neuron_->config().h()); 
} 
 
void LearnSynapseStrength::UpdateSynapse(int synapse) { 
  neuron_->set_strength(synapse, 
                        neuron_->config().g_m()); 
  neuron_->set_frozen(synapse, true); 
} 
 
void LearnSynapseStrength::FinishTraining() { 
  neuron_->set_H(neuron_->config().h_m()); 
} 

StartTraining ensures that the firing threshold is set to the lower training 
value.  UpdateSynapse simply sets the synapse strength to G, the gain.  
FinishTraining updates the firing threshold to the higher recognition 
threshold. 

Synapse atrophy training is implemented in LearnSynapseAtrophy, whose 
implementation is: 

void LearnSynapseAtrophy::StartTraining() { } 
 
void LearnSynapseAtrophy::UpdateSynapse(int synapse) { 
  neuron_->set_frozen(synapse, true); 
} 
 
void LearnSynapseAtrophy::FinishTraining() { 
  for (int32 i = 0; i < neuron_->length(); ++i) { 
    if (!neuron_->frozen(i)) { 
      neuron_->set_strength(i, 0.0); 
      neuron_->set_delays(i, kDisabled); 
    } 
  } 
} 

 

StartTraining is unecessary for this learning method, so it has an empty 
implementation.  UpdateSynapse simply "freezes" each synapse that 
participates in learning, which marks it as having been used in training so it 
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won't be disabled when training completes..  FinishTraining atrophies 
unused synapses to zero by marking them disabled. 

Neurons are initialized randomly as follows: 

void Neuron::Init(const NeuronConfig& config) { 
  // Intialize neuron values 
  config_ = config; 
  C_ = config.c(); 
  D1_ = config.d1(); 
  D2_ = config.d2(); 
  H_ = config.h(); 
  Q_ = config.q(); 
  R_ = config.r(); 
  Q_after_ = -1.0; 
  if (config.has_g_m()) { 
    G_m_ = config.g_m(); 
  } else { 
    G_m_ = -1.0; 
  } 
  if (config.has_h_m()) { 
    H_m_ = config.h_m(); 
  } else { 
    H_m_ = -1.0; 
  } 
  length_ = static_cast<int32>(floor(C_ * H_ * Q_ * R_ 
                                     + kEpsilon)); 
 
  // Initialize each synapses' delay, container, and 
  // frozen status 
  // 
  if (delays_.size() != length_) { 
    delays_.resize(length_); 
    containers_.resize(length_); 
    frozen_.resize(length_); 
    strength_.resize(length_); 
    sum_.resize(C_); 
  } 
 
  // Randomly assign delays and containers to each 
  // synapse 
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  // 
  for (int32 i = 0; i < length_; ++i) { 
    // Randomly assign delays to synapses 
    delays_[i] = random_->Rand32() % D2_; 
    // Randomly assign synapses to containers 
    containers_[i] = random_->Rand32() % C_; 
    frozen_[i] = false; 
    strength_[i] = 1.0; 
  } 
 
  if (config.has_g_m() && config.has_h_m()) { 
    learn_.reset(new LearnSynapseStrength(this)); 
  } else { 
    learn_.reset(new LearnSynapseAtrophy(this)); 
  } 
} 

Expose is the heart of the model, and it simply computes whether the 
neuron summation met or exceeded the threshold. 

int32 Neuron::Expose(const Word& word) { 
  // Iterate over delays checking whether occurs 
  int s = slots(); 
  for (int32 d = 0; d < s; ++d) { 
    for (int32 i = 0; i < C_; ++i) { 
      sum_[i] = 0.0; 
    } 
    // Iterate over sparse signals in word 
    for (Word::const_iterator it = word.begin(); 
         it != word.end(); ++it) { 
      int32 synapse = it->first; 
      int32 delay = it->second; 
 
      // If delay and word delay adds up to current 
      // delay then increment the container's sum by  
      // that synapse's strength. 
      // 
      if (delays_[synapse] + delay == d) { 
        sum_[containers_[synapse]] +=  
          strength_[synapse]; 
      } 
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    } 
 
    // Iterate through containers to see if any fired 
    for (int32 i = 0; i < C_; ++i) { 
      // If at least H firings, then denote that  
      // container as fired. 
      // 
      if (H_ <= sum_[i] + kEpsilon) return d; 
    } 
  } 
  return kDisabled; 
} 

 

First, it iterates through the active synapses in the input word (which is 
usually sparse), computing the summation within each compartment 
independently in the member vector sum_.  Then it checks each 
compartment to see if any of them should have fired. 

Train is the routine which trains a neuron given an input word.   

int32 Neuron::Train(const Word& word) { 
  int32 d = Expose(word); 
 
  if (d == kDisabled) return d; 
 
  // Iterate through containers to see which fired 
  for (int32 i = 0; i < C_; ++i) { 
    if (sum_[i] + kEpsilon < H_) continue; 
    // Update those synapses that contributed to the  
    // neuron firing. 
    // 
    for (Word::const_iterator it = word.begin(); 
         it != word.end(); ++it) { 
      int32 synapse = it->first; 
      int32 delay = it->second; 
 
      if (delays_[synapse] + delay == d 
          && containers_[synapse] == i) { 
        learn_->UpdateSynapse(synapse); 
      } 



!

!

! ! ! ! ! $%(!

    } 
    break; 
  } 
  return d; 
} 

First it checks to see if the neuron fired.  If it didn't, then there is nothing to 
learn, so it returns.  If it did fire then it determines which compartment, or 
compartments, caused the neuron to fire, and updates each synapse which 
participated in the firing.  This implementation becomes somewhat 
inefficient if both C and the probability of learning pL are large because if 
multiple containers fired, all participating synapses in those firing 
compartments are strengthened whereas one compartment would suffice.  
Experiments testing independent learning by compartments under natural 
conditions would be very helpful in refining the extended cognon (CE) 
model. 
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